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Abstract 

In I999 Sun Microsystems and IBM introduced a new 
version of Java 5 Remote Method Invocation (RMI), 
called Remote Method Invocation over Internet Inter- 
Object Request Broker (ORB) protocol ( M I  over 
IIOP), with the release of JDKl.3. The new M I A P I  
uses a different transport protocol than the original 
RMI, that is compliant to Common Object Request Bro- 
ker Architecture ’s (CORBA) Internet Inter-ORB (IIOP) 
specifcation. The original RMI uses the Java Remote 
Method Protocol (JRMP) as the transport protocol. 
This paper illustrates that IIOP is less eficient in the 
transmission of data than JRMP in spite of the fact that 
it uses less TCPpackets. The goal is to allow develop- 
ers to decide when to use JRMP versus RMI over IIOP 
when Java to Java object communications are involved 
and performance cost is of issue. 

keywords: Java Performance, Remote Method Invoca- 
tion Performance, Internet Interoperability, Internet 
Inter-ORB Protocol, Distributed Garbage Collection 

1. Introduction 

In 1997 Remote Method Invocation (RMI) was intro- 
duced in JDKl. 1 .Remote Method Invocation (RMI) is 
a Java based technology that allows a developer to cre- 
ate distributed object applications using the Java 
Remote Method Protocol (JRMP). In 1999 Sun and 
IBM cooperated in introducing a new RMI transport 
protocol, called Remote Method Invocation over Inter- 
net Inter-ORB (Object Request Broker) Protocol (RMI 
over IIOP). This new protocol is compliant to Common 
Object Request Broker Architecture’s (CORBA) IIOP 
specification. The scope of this paper is to evaluate the 
performance of the two RMI transport protocols based 
on empirical data obtained with a RMI benchmark soft- 
ware module that we developed. Empirical data was 
obtained by using multiple invocations of a varying in 
size array of integers and a varying in size string of 
characters. The benchmark software allowed the cap- 
ture of time at the application layer. A network man- 
agement software module called Ethereal, was used in 
order to analyze the network layer communications 
(TCP packets). The time measured by the benchmark 
included the data carrying RMI communications trans- 
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actions for each group of invocations but not any RMI 
communications set up time. 

RMI allows the transfer of objects as well as primitive 
types by value or by reference. The transferring of data 
is accomplished through the serialization utility of 
Java. RMI also provides a name registry database of 
remote objects which runs on the server side as well as 
a mechanism to garbage collect distributed objects. 
RMI is restricted to Java to Java object communica- 
tions and its JRMP protocol is not compliant to 
CORBA specification. RMI’s performance is degraded 
primarily because of the computational cost of the seri- 
alization procedure and the extra communications 
required by the Distributed Garbage Collection (DGC) 
mechanism. 

When using RMI over IIOP to produce Java technol- 
ogy based distributed applications, there is no need for 
leaming an Interface Definition Language (IDL). A 
developer can decide on the proper RMI protocol 
depending on the applications and the performance 
requirements .Comparative performance measurements 
of JRMP RMI versus RMI over IIOP are not available 
when utilization of multiple invocations and variable 
amounts of data of different data types is made. 

2. Motivation 

The need to know the cost of using RMI as a function 
of the number of invocations and the amount of data 
transmitted for various data types, is important to the 
developer. Developers need to make a decision based 
on the performance criteria provided in the applica- 
tion’s specification.The availability of benchmark soft- 
ware was researched and few were found for specific 
applications pertaining to the JRMP protocol. The 
results listed in the published papers were not specific 
enough to allow usage by a developer to predict perfor- 
mance based on the number of inGocations and the 
amount of data transmitted. No comparison data of the 
performance of the two protocols was found as a func- 
tion of the number of invocations and the amount of 
data transmitted. 

The decision to benchmark the two types of RMI pro- 
tocols was also based on the non availability of data 
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that will explain the communication transactions and 
the cost involved with each transaction. 

2.1 Previous Work. 

Work has been performed by various researchers in 
terms of measuring (benchmarking) and improving the 
performance of RMI. M. Phillipsen et all [ 11 produced 
an improved serialization facility for RMI and released 
it as a new R M I  framework under the name U R M I .  
Their serialization simplifies the data type information 
carried by the stream.The group also developed their 
own benchmark software and measured performance 
of KARMI claiming a 90% improvement over the stan- 
dard RMI. Our data contradicts one of their conclu- 
sions that the overhead cost is constant for large array 
objects. V. Krishnaswamy et all [2] revised the trans- 
port layer of RMI in order to utilize UDP message 
delivery instead of TCP and introduced a multicast pro- 
tocol which is used to maintain consistency of cached 
objects. They also revised the reference layer of RMI in 
order to allow caching of objects at a client node. Their 
experimental data showed mixed results with marginal 
improvements in the case of object caching and with 
negative results in the case of using UDP instead of 
TCP protocols. 

K. Kono et all [3] improved the performance of RMI 
by introducing a variant of Sun’s serialization which 
dynamically converts arguments into in-memory repre- 
sentations valid at the client’s platform thus claiming 
an improvement of 1.9 to 3.0 times faster than Sun’s 
M I .  The improvements introduced were based on a 
reduction of memory accesses required to copy and 
convert object structures. S .  Ahuja and R Quintao [4] 
performed benchmark measurements of the cost of 
RMI (using JRMP) versus the cost of Java Sockets and 
found insignificant differences. Their benchmark was 
based on read and write operations into a file. The 
amount of data per TCP packet that RMI uses was not 
compared to an equivalent socket implementation. S .  
Campadello et all [lo] did an analysis of the perfor- 
mance cost of R.MI and proposed a solution in improv- 
ing the performance in wireless applications of M I .  
Their solution is based in mediators and a lookup of 
cached objects frrst before a request is sent to a server. 
Their benchmark was based on KARMI [ 11 and found 
a four times improvement over normal Rh4I. 
3. RMY- Architecture and protocols 

A RMI application consists of a client program that 
will request the services of a remote object from the 
server program. The basic components consist of an 
interface, a rmi server program that represents the 
implementation of the interface, the rmi registry’ the 
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client program and a stub. The client will first obtain a 
reference to the remote object from the registry, which 
is listening at the default port 1099, by performing a 
lookup. Once a reference is obtained communications 
with the server are done via the stub.The rmi server is 
responsible for implementing the operations defined by 
an interface. These are the operations that the remotely 
invokable object can use. The m i  server binds or 
rebinds the remote object to the rmi registv. The stub 
is created during the compilation of the rmi sewer pro- 
gram and it is transferred to the client side [ 5 ] .  

A better understanding of the communications 
involved can be obtained by examining RMI’s layered 
architecture and comparing it to the OS1 model (Fig. 1). 
The application layer is the same as the application 
layer of the OS1 model and contains the respective 
application programs. The stubhkeleton layer is 
responsible for managing the remote object interface 
between the client and the server. When the client 
issues a remote method invocation the stub in essence 
opens a socket to the server on the port specified in the 
stub itself. The stub then sends the RMI header infor- 
mation, that is the hostname of the server and the port 
number that the server is listening for remote calls on 
the object. The stub marshals (serializes) and unmar- 
shals the arguments sent over the connection. The 
Remote Reference Layer is responsible for interpreting 
and managing references to the remote service objects. 
It connects using a unicast link (point to point) connec- 
tion. It also supports the activation of dormant services 
(Java 2 SDK), threading, and garbage collection. The 
Transport Layer is using by default the TCP protocol. 
This is where the JRMP protocol is located. On top of 
the TCPAP, RMI implements the Java Remote Method 
Protocol (JRMP) specified by Sun. The J F W P  makes 
use of two other protocols: Java Object Serialization 
and HTTP. 
4. RMI over IIOP Architecture - and protocols 

RMI over IIOP provides the functionality specified by 
COMA. Developers using Java technology do not 
have to write Interface Definition Language (IDL) 
modules. Objects can be serialized and passed by value 
between applications. RMI over IIOP is based on two 
specifications of the Object Management Group: Java 
Language Mapping to OMG IDL Specifcation [7] and 
CORBA/IIOP 2.3.1 Specification [8].Compilation of 
the server implementation program using the iiop 
option of the RMI compiler, generates a tie module. 
The tie module is used by the server to communicate 
with the client via the IIOP protocol. The function of 
the IIOP protocol is to translate any Object 
Request Broker (ORB) messages to TCPAP. 
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FIGURE 1. RMI Architecture 

The differences between the two protocols (JRhP and 
IIOP) start at the top layer (Fig. 2). The CORBA COS 
(Common Object Services) Naming Service has to be 
used. A default name server is provided with the JDK 
under the name tnamesen? This nameserver listens at 
port 900. In order for the COS Naming Service to be 
used, the Object Request Broker (ORB) must know the 
port of a host running a naming service.Java edition 1.2 
and higher includes an ORB written in Java.The pur- 
pose of ORB is to make it possible for clients to con- 
nect with objects servicing requests on the server 
side.An application gains access to the CORBA envi- 
ronment by initializing itself into an ORB. Only the 
ORB with which the remote object is published under- 
stands the actual object and its references. The ORB 
can invoke operations and calls to objects located 
within other 0RBs.This gives rise to a requirement for 
an Inter-ORB bridge and as a result the IIOP require- 
ment was produced. 

5. Benchmark description 
The goal of the benchmark software was to accumulate 
data based on two variables; invocations and amount of 
data bytes transmitted. This is a synthetic approach that 
was chosen over a real world application benchmark 
approach because it would allow the generation of a 
more generalized performance prediction algorithm. 
The benchmark allows the user to invoke an array of 
integers or a string of characters.These two data types 
appear quite often in an application and therefore they 
could be good predictors of performance. 
The client software provides an algorithm where the 
data carried by the object invoked grows by an incre- 
ment defined by the user, as the software loops through 
a number of remote method invocations defined by the 
user. The number of loops grows by a user defined 
increment up to a maximum number. 
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TCPIIP 

FIGURE 2. IIOP PROTOCOL ARCHITECTURE 

5.1 Algorithm description 
The algorithm can be formulated and the number of 
invocations and the amount of data can be calculated 
before a benchmark execution, using a derived for- 
mula. The number of characters or integers transmitted 
after all the loop iterations are completed can be mathe- 
matically represented. There are two loops involved. 
The inner loop starts with a specified number of invo- 
cations and repeats them while increasing the number 
of data transmitted.The outer loop repeats the inner 
loop for an increased number of invocation 1oops.Let n 
be the number of times that the string size or the array 
of integers will be increased during one set of loop 
invocations (inner loop).Also let 1 represent the number 
of times loop invocations are increased (outer loop). 
The total number of data types transmitted is given by: 

Zx((l+ 1)/2)xllxDlxnx(n + 1)/2) 

where LI is the user defined increment by which the 
loops will be increased (outer loop) and DI is the incre- 
ment by which the data size will be incremented during 
each set of specific number of loop invocations (inner 
loop). The total number of data is multiplied either by 4 
(for integers) or by 2 (for characters) in order to obtain 
the number of data bytes. The time taken to invoke data 
during one set of outer loop iterations is recorded by 
the software. There is one more algorithm in the soft- 
ware that allows the recording of the time taken to do 
the very first invocation of data. This allows us to 
extrapolate any set up time needed by the Java Remote 
Method protocol. 
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Another important parameter besides the Total- 
DataTypes parameter is the total number of invocations 
made. The total number of invocations is: 

. The performance of the RMI application is strongly 
dependent on the two parameters; TotalData and Total- 
Invocations. 

6. Performance measurements 

( Z x ( Z + 1 ) / 2 ) x L I x n )  

The performance of the two RMI protocols was accom- 
plished using a Windows NT (NT 4.0) environment on 
the client side and a Linux (Red Hat 6.2) on the server 
side.The client was a 186 MHz Pentium Pro machine 
with 128 MI3 of RAM whereas the server was a 650 
MHz Pentium 3 machine with 128 MB of RAM.The 
two machines were connected via 100 B Ethemet.A 
series of benchmark executions were performed. Each 
time the number of invocations was held constant and 
the amount of data transacted was varied.The bench- 
mark software recorded the round trip time for each 
invocation.Information on the TCP packets for each 
benchmark execution was also saved using the network 
management software (Ethereal). 

Graphs of performance cost (transmission time) versus 
number of bytes transmitted were plotted for specific 
number of invocations. One can view the excel tables 
with all the data information by going to the web site 
dedicated to this research: http://213.47.15O.I1 O/notes/ 
.The graphs are shown in Fig. 3 through Fig. 14. The 
lines in the chart represent a linear regression of the 
data points involved. Each point on a chart represents 
the total time for all loop iterations from one bench- 
mark run. The number of TCP packets versus amount 
of data for a constant number of invocations was also 
plotted. Data was obtained for 20,160 and 560 con- 
stant invocations while the size of both the Array of 
integers and the string data types were varied. 

7. Data Analysis 

The charts reveal that the IIOP protocol consistently 
takes longer to transmit the same number of bytes with 
same number of invocations for both integer and char- 
acter types (see Fig. 3,4,6,8,9,  and 13).The charts 
also show that the IIOP protocol uses on the average 
less TCP packets to transmit the same amount of data 
with the same number of invocations (see Fig.5,7, 10, 
11,12 and 14). As an example, the file pertaining to 20 
invocations with 24KE3 of array integer data was ana- 
lyzed. 

In the case of IIOP the total number of TCP packets 
was 160. Communication started between the client 
and the Name Server at a cost of 6 packets. The naming 
context and the proper protocol identification were 
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established during this communication.In the next level 
of communication the client asks the ORB to resolve 
the name of the server. The name server gets resolved 
and a port is established for remote invocations. 
Another 6 packets were expended between the client 
and the server in identification information.Invocations 
from the client begin with packet number 22 and con- 
tinued until all data had been transfened.The actual 
data transferred, including the invocations, took 137 
packets. During each invocation the packets transmit- 
ted were as follows: 
client --> server Invocation packet. 
server-->client responds with the identification num- 
bers of the objects involved. 
server-->client data packets. 

The number of packets carrying data was 97 out of the 
137 packets transmitted between the client an the 
server during invocations. The ratio of data transferring 
packets over the total number of packets transmitted 
was 71%. An analysis of the times devoted towards the 
clientlserver communications for data exchange versus 
all other overhead communications shows that the ratio 
of data communications versus total time was 33 lms/ 
1094 ms or 30% (for the 137 packets). This demon- 
strates that a substantial amount of time is devoted to 
set up communications. A similar analysis of the JRMP 
data file revealed that 250 TCP packets were used. 
Communications start between the client an the regis- 
try. The client obtains the object reference and the port 
number the server is listening to. Additional set up 
communications take place between the server and the 
client where the IP addresses are confirmed, the stub 
ID and Object ID are passed over and DGC informa- 
tion is exhanged. The client issues a dirv call in packet 
20 and requests a lease period.The server responds 
with the lease and the VMID (Virtual Machine ID of 
the client) Confirmation. Data exchange communica- 
tions begin with packet 35. A minimum of 5 packets of 
overhead data is consumed during each invocation, 
before data is transmitted. The actual data carrying 
packets in this example were 101 out of 216 or 47%. 
The time consumed for set up at the beginning up to the 
time invocations are ready to start was 1034 ms out of 
the 1194 ms for the entire file execution. The data 
transfer took only 160 ms as it is confirmed by the 
benchmark software (1 4%) Therefore 86% of the time 
was spent in setting up the transactions before any data 
is transmitted.The DGC communications take substan- 
tial amount of that time, as it is confirmed by S .  Cam- 
padello et all at the University of Helsinski, Finland 
[ 101. The overall time including set up time, is almost 
equal to the time it took by the IIOP protocol for the 
same number of invocations and IIOP data (1041 ms 
versus 1194 ms). The data also shows that there is 
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some difference in the performance when integers are 
involved versus characters, based on the same number 
of bytes and invocations. Analysis of the data in the 
packets reveals that the maximum amount of data car- 
ried by RMI (JRMP) TCP packet during invocation is 
1078 bytes whereas an IIOP TCP packet carries 
approximately a maximum of 1800 bytes. 

This explains the fact that there are less TCP packets 
devoted to data transfer during each invocation in IIOP. 
Unfortunately, IIOP consumes more time for data 
exchange because of the ORB layer and its serializa- 
tion procedure. IIOP goes through additional data type 
conversions from IDL to Java and vice versa even 
when Java remote objects are involved and conversion 
would not seem necessary. Serialization of Arrays 
takes additional serialization data in HOP and as a 
result additional time. Figures 15 and 16 summarize the 
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time differences and set up cost respectively. The num- 
bers in parenthesis in Figure 15 are the difference in 
time when equal number of data bytes are considered 
for both integers and characters. The data indicates that 
the relative time difference between IIOP and JRMP 
grows in an non-linear fashion as the number of invo- 
cations and the amount of data grows. It also seems that 
IIOP becomes more efficient in transmitting characters 
than transmitting an equivalent number of array of inte- 
gers bytes. Overall IIOP, nevertheless, is still less effi- 
cient than JRMP in the transmission of characters.The 
set up times (time before invocations begin) between 
the two protocols is also different with IIOP requiring 
less time. 

7.1 Conclusions 
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The empirical data collected indicates that data deliv- 
ery is accomplished more efficiently in time by the 
JRMP protocol. During the delivery of data, however, 
the JRMP protocol uses more packets that the IIOP 
protocol because of the additional transactions needed 
during each invocation.It seems that a lot of the same 

information is being exchanged during each invocation 
in the JRMP protocol. The set up transactions also take 
a lot more time in the JRMP than in the IIOP protocol. 
This is due to the fact that the IIOP protocol does not 
have to deal with a Distributed Garbage Collector 
(DGC). Although RMI uses the algorithm inherited 
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from Modulu 3, another, more efficient, algorithm of 
the many described in S. E. Abdullahi and G. A. Ring- 
wood' s paper on the categorization of Distributed Gar- 
bage Collectionalgorithms [ 111 could be chosen. 

The difference in data delivery times between IIOP and 
JRMP widens as the number of invocations increases 
and the number of data increases (see Fig. 15). The cost 
of 20 invocations for an array of integers shows that 
JRMP is on the average 176 ms faster than IIOP. When 
560 invocations are involved, JRMP is almost 1 second 
faster than IIOP in the delivery of data. Since set up 
time transactions stay the same for both protocols 
regardless of the number of invocations and the amount 
of data to be transferred, the conclusion is that for large 
amounts of data using the JRMP protocol would be 
more cost effective. The overall time for large amounts 
of data is lower than the set up time for benchmark files 
run under the JRMP protocol. For smaller amounts of 
data the IIOP protocol will be more effective since the 
set up time is significantly less that of JRMP. Substan- 
tial overhead is transmitted during each invocation 
which is repetitive. One could conclude that a definite 
improvement would be to reduce the amount of over- 
head by not transmitting the repetitive overhead infor- 
mation. The client will have to notify the server that a 
considerable amount of invocations are expected and 
that the overhead information could be sent only every 
so many invocations. That will reduce the number of 
packets and increase efficiency. 

In conclusion this paper showed that JRMP is more 
efficient in the transmission of data than IIOP in spite 
of the fact that more TCP packets are transmitted over 
the network when JRMP is used. 

The recomendation therefore to developers is to use 
IIOP for small amounts of data where the time for the 
transmission of data is small by comparison to the set 
up time for JRMP. For larger amounts of data JRMP 
should be preferred. This assumes of course that per- 
formance is the only criterion. The network speed 
should also be considered carefully since more datya 
packets will be transmitted if JRMP is chosen. 
8. Futurework 

Future work is centered around the optimization of the 
performance of both types of RMI. The serialization 
mechanism for both protocols and the DGC for JRMP 
are areas that can afford improvement.The addition of 
an efficient DGC algorithm for IIOP will be examined. 
Additional investigation is needed that will compare 
performance of homogeneous systems versus heteroge- 
neous systems (since serialization routines are platform 
depended). The development of a predictive algorithm 
for the performance of RMI will be continued. 
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