
© 2009 Marty Hall

Using and DeployingUsing and Deploying
Web Applicationspp

Originals of Slides and Source Code for Examples:
http://courses.coreservlets.com/Course-Materials/msajsp.html

Customized Java EE Training: http://courses.coreservlets.com/
Servlets, JSP, Struts, JSF/MyFaces/Facelets, Ajax, GWT, Spring, Hibernate/JPA, Java 5 & 6.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

© 2009 Marty Hall

For live Java training, please see training courses at
http //co rses coreser lets com/ Ser lets JSP Str tshttp://courses.coreservlets.com/. Servlets, JSP, Struts,
JSF, Ajax, GWT, Java 5, Java 6, Spring, Hibernate, JPA,

and customized combinations of topics. p

Taught by the author of Core Servlets and JSP, More
Servlets and JSP and this tutorial Available at public

Customized Java EE Training: http://courses.coreservlets.com/
Servlets, JSP, Struts, JSF/MyFaces/Facelets, Ajax, GWT, Spring, Hibernate/JPA, Java 5 & 6.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Servlets and JSP, and this tutorial. Available at public
venues, or customized versions can be held on-site at your

organization. Contact hall@coreservlets.com for details.

Agenda

• Purpose of Web applications
• Structure of Web applications
• Setting up Web applications with Tomcat
• Sharing data among Web applications

4

Idea of Web Applications

• Single directory or file
– Servlets, JSP pages, HTML files, utility classes, beans,

tag libraries, etc. are bundled together in a single
directory hierarchy or filedirectory hierarchy or file

• Common URL prefix
– Access to content in the Web app is always through a pp y g

URL that has a common prefix
– http://host/webAppPrefix/blah/blah

eb ml controls man things• web.xml controls many things
– Many aspects of Web application behavior controlled

through deployment descriptor (web.xml)

5

through deployment descriptor (web.xml)
• The deployment descriptor is covered in detail in the next

section.

Purposes of Web Applications

• Organization
– Related files grouped together in a single file or directory

hierarchy.
• HTML files, JSP pages, servlets, beans, images, etc.p g g

• Portability
– All compliant servers support Web apps.

C d l b i i l fil– Can redeploy on new server by moving a single file.
• Separation

– Each Web app has its own:– Each Web app has its own:
• ServletContext
• Class loader
• Sessions

6

• Sessions
• URL prefix
• Directory structure

Structure of a Web Application

• JSP and regular Web content
(HTML style sheets images etc):(HTML, style sheets, images, etc.):
– Main directory or a subdirectory thereof.

• Servlets:
WEB INF/classes (if servlet is unpackaged i e in default package)– WEB-INF/classes (if servlet is unpackaged – i.e. in default package)

– A subdirectory thereof that matches the package name.
• Unjarred beans and utility classes:

Same place as servlets (but always use packages!)– Same place as servlets (but always use packages!)
• JAR files:

– WEB-INF/lib.
• web xml:• web.xml:

– WEB-INF
• Tag Library Descriptor files:

WEB INF bdi t th f

7

– WEB-INF or subdirectory thereof
• Files in WEB-INF not directly accessible to clients

– Server can use RequestDispatcher to forward to pages in WEB-INF

Example Deployment Structure

8

Installing Eclipse

• Overview
E li i f d l i– Eclipse is a free open-source development environment
with support for Java and many other languages

• Downloadingg
– http://www.eclipse.org/downloads/

• Choose "Eclipse IDE for Java EE Developers"
• As of 8/2008, version 3.4, called Eclipse GanymedeAs of 8/2008, version 3.4, called Eclipse Ganymede

• Installing
– Unzip into directory of your choice

P h li d k– Put shortcut to eclipse.exe on your desktop
• Integrating Tomcat in Eclipse

– http://www coreservlets com/

9

http://www.coreservlets.com/
Apache-Tomcat-Tutorial/eclipse.html

Configuring Eclipse

• Make sure Eclipse
k b Tknows about Tomcat
– Click on Servers tab at bottom.

R-click in windowR-click in window.
– New, Server, Apache, Tomcat v6.0,

Next, navigate to folder, Finish.

• Suppress unnecessary
compiler warnings

Wi d  P f – Window  Preferences 
Java  Compiler 
Errors/Warnings

10

g
• Change "Serializable class

without ..." to "Ignore"

Making Web Apps in Eclipse

• Make empty project
– File  New  Project 

Web  Dynamic Web Project
– Give it a name (e g "test")– Give it a name (e.g., test)
– Accept all other defaults

• Shortcut
– If you have made Dynamic

Web Project recently in
workspace you can just doworkspace, you can just do
File  New 
Dynamic Web Project

11

Adding Code to Eclipse Projects

• Locations
src– src

• Unpackaged Java code
• Packages strongly recommended

– src/somePackagesrc/somePackage
• Java code in somePackage package

– WebContent
• Web files (HTML, JavaScript, (p

CSS, JSP, images, etc.)
– WebContent/some-subdirectory

• Web content in subdirectory
W bC t t/WEB INF– WebContent/WEB-INF

• web.xml (will be discussed later)
• Can also click on

"Deployment Descriptor"

12

p y p

• Note
– Can cut/paste or drag/drop files into appropriate locations

Starting Server in Eclipse

• Start Tomcat
– Select "Servers" tab at bottom
– R-click on Tomcat

Choose "Start"– Choose "Start"

• Verify server startup
– Open browserOpen browser
– Enter http://localhost/

• You should see blank directory listing
– If you want pretty Tomcat

welcome page, search for a
folder called ROOT in your
Eclipse workspace.

13

p p
Copy files from
C:\tomcat-dir\webapps\ROOT
to that folder

Deploying App in Eclipse

• Deploy project
– Select "Servers" tab at bottom
– R-click on Tomcat

Choose "Add and Remove Projects"– Choose "Add and Remove Projects"
– Choose project
– Press Add
– Click "Finish"

• Restart
Server
– R-click Tomcat

at bottom

14

at bottom
– Restart

Testing Deployed Apps in Eclipse

• Start a browser
Eclipse also has builtin browser– Eclipse also has builtin browser,
but I prefer to use Firefox or
Internet Explorer

• Test base URLTest base URL
– http://localhost/test/

• Test Web content
http://localhost/test/Hello html– http://localhost/test/Hello.html
(case sensitive!)

– http://localhost/test/Hello.jsp
– If you used subdirectoriesyou used subd ecto es

• http://localhost/test/
some-subdirectory/blah.html

• Test servlets

15

– http://localhost/test/servlet/HelloServlet
– http://localhost/test/servlet/coreservlets.HelloServlet2

• Note: custom URLs discussed in next section

Eclipse Structure (IDE-specific) vs.
Deployment Structure (Standard)Deployment Structure (Standard)

Eclipse Deployed
J d

• Java code
– src/subDirMatchingPackage

• Java code
– deployDir/webAppName/

WEB-INF/classes/src/subDirMatchingPackage

• HTML, JSP, Images
– WebContent

W bC / d Di

subDirMatchingPackage

• HTML, JSP, Images
– deployDir/webAppName

– WebContent/randomDir

• web.xml
– WebContent/WEB-INF

deployDir/webAppName
– deployDir/webAppName/

randomDir

• web xml• web.xml
– deployDir/webAppName/

WEB-INF

N t

16

• Note
– On Tomcat, deployDir is

tomcat_installdir/webapps

Making Custom Web Apps
ManuallyManually

1. Make a directory called app-blank
• app blank/WEB INF/web xml (copy from mine)• app-blank/WEB-INF/web.xml (copy from mine)
• app-blank/WEB-INF/classes (empty)

2. Copy/rename
E bl k d ll it A• E.g., copy app-blank and call it myApp

3. Put code in proper place in myApp
• Web content (HTML , JSP, images, etc.) goes in the top-level

directory (myApp) or any subdirectory other than WEB INF (e gdirectory (myApp) or any subdirectory other than WEB-INF (e.g.,
myApp/someDir)

• Servlets and other classes go in a subdirectory of WEB-
INF/classes that matches the package name.N /c asses t at atc es t e pac age a e.

4. Copy app to deployment directory
• On Tomcat, entire directory goes in install_dir/webapps

5 Update your CLASSPATH

17

5. Update your CLASSPATH.
• Add webAppDir/WEB-INF/classes to it.
• Not usually needed if you have ".." in the CLASSPATH

Manual Web App Development
Strategy with TomcatStrategy with Tomcat

• Development
– Keep the original of your Web app directory in your

development directory. Have all the files in the proper
location within that Web app directory.location within that Web app directory.

• Deployment
– Copy the entire Web app directory to the server's py pp y

deployment location (e.g., to install_dir/webapps).
• I keep a shortcut to webapps and drag the Web app dir

onto the shortcut with the R mouse and then say "Copy".y py

• CLASSPATH
– Must include the top-level development directory

18

• That now means WEB-INF/classes dir of your Web app
• If your CLASSPATH has "..", you can leave CLASSPATH

unchanged as long as you avoid nested packages

Changing the Web App Prefix

• Eclipse default: project name is Web App
prefixprefix
– So, if project is named foo, when you deploy locally the

URL is http://localhost/foo/whatever
• Tomcat default: folder name is Web App

prefix
So if you deploy the folder bar to tomcat dir/webapps– So, if you deploy the folder bar to tomcat_dir/webapps,
the URL is http://localhost/bar/whatever.

• Custom prefix in Eclipse
– R-click on project, then Properties Web Project

Settings  Context Root
• Custom prefix in Tomcat

19

Custom prefix in Tomcat
– Edit tomcat_dir/conf/server.xml

Defining Custom URLs

• Java code
package myPackage;package myPackage; ...
public class MyServlet extends HttpServlet { ... }

• web.xml entry (in <web-app...>...</web-app>)
Gi t l t– Give name to servlet

<servlet>
<servlet-name>MyName</servlet-name>
<servlet class>myPackage MyServlet</servlet class><servlet-class>myPackage.MyServlet</servlet-class>

</servlet>

– Give address (URL mapping) to servlet
<servlet-mapping><servlet-mapping>
<servlet-name>MyName</servlet-name>
<url-pattern>/MyAddress</url-pattern>

</servlet-mapping>

20

• Resultant URL
– http://hostname/webappPrefix/MyAddress

Defining Custom URLs: Example
(Assume Eclipse Project is "test")(Assume Eclipse Project is test)
<?xml version="1.0" encoding="UTF-8"?>
<web-app

Don't edit this manually.
Should refer to version 2.4<web app

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://java.sun.com/xml/ns/javaee"
...

or 2.5 (Tomcat 6 only).

version="2.5">

<!-- Use the URL http://hostname/intro/hi instead
of http://hostname/intro/servlet/HelloServlet -->of http://hostname/intro/servlet/HelloServlet -->

<servlet>
<servlet-name>Second Hello Servlet</servlet-name>
<servlet-class>coreservlets.HelloServlet2</servlet-class>

</servlet>
<servlet-mapping>
<servlet-name>Second Hello Servlet</servlet-name>

l tt /hi2 / l tt

Any arbitrary name.
But must be the same both times.

Fully qualified classname.

21

<url-pattern>/hi2</url-pattern>
</servlet-mapping>

</web-app>
The part of the URL that comes after the app (project) name.
Should start with a slash.

Defining Custom URLs: Result

• Eclipse details
f li j i– Name of Eclipse project is "test"

– Servlet is in src/coreservlets/HelloServlet2.java
– Deployed by right-clicking on Tomcat Add and Remove

22

– Deployed by right-clicking on Tomcat, Add and Remove
Projects, Add, choosing test project, Finish, right-clicking
again, Start

Failing to Define Custom URLs

• You should always use custom URLs on
d l d jdeployed projects
– URLs look cleaner and simpler and shorter

URLs have more meaningful names– URLs have more meaningful names
– You don't expose possibly proprietary class file names
– You can use web.xml to assign init params laterg p

• Does not work with …/servlet/myPackage.MyServlet

– You can apply filters and security settings later (via
web xml) in a more predictable and controllable mannerweb.xml) in a more predictable and controllable manner

– Most importantly of all, you can avoid being added to
Marty’s “Hall of Shame”

23

• The kiss of death for any self-respecting Java EE
developer

The Hall of Shame (Deployed Sites
with Ugly /servlet/ URLs)with Ugly …/servlet/… URLs)

24

The Art of WAR (Files)

• WAR files are simply JAR files with a different file
extensionextension
– And JAR files are simply ZIP files

• All servers are required to support Web apps that
are in WAR filesare in WAR files
– Technically, they are not absolutely required to support unbundled

Web apps.
• To create a WAR file change directory to top level• To create a WAR file, change directory to top-level

Web app directory and do:
– jar cvf webAppName.war *

O Wi Zi ("C t C d F ld " XP)– Or use WinZip (or "Create Compressed Folder" on XP)
– Eclipse can build WAR files automatically

• R-click project, Export WAR file

• Registering is still server specific

25

• Registering is still server-specific
– Tomcat: just drop WAR file in install_dir/webapps
– webAppName becomes Web application URL prefix

Handling Relative URLs:
ProblemProblem

• Individual JSP or HTML page: easy to load
i f l i l iimage from relative location
–

–
• What about servlets?

– Same strategy doesn't workgy
– Default servlet URL: http://host/prefix/servlet/Name
– Browser, not server, resolves relative URL

Wh t if i i d b JSP HTML• What if same image is used by JSP or HTML
pages scattered throughout app?
– Same problem

26

Same problem
• Also same problem:

– Style sheets, applets, even regular hypertext links

Handling Relative URLs:
SolutionsSolutions

• Use the Web application name in the URL.
–

• Use web.xml to assign URLs that are at the
top level of the Web applicationtop level of the Web application
– Change http://host/webAppPrefix/servlet/SomeName to

just http://host/webAppPrefix/SomeNamej p pp
– More useful for servlets than for JSP

• Use getContextPath
– Call request.getContextPath()

and add result to URLs by hand

27

Velocity, WebMacro, and Other
Alternatives to JSP TechnologyAlternatives to JSP Technology

• Issues
– Standardization
– Portability

Integration– Integration
– Industry support
– Technical features

• Arguments for alternatives focus almost
exclusively on last issue
– Even if proponents were right about all their technical

arguments, would that matter?

28

Alternatives to JSP Technology:
Integration IssuesIntegration Issues
• Web apps give standard location for:

S l t JSP d l W b t t– Servlets, JSP pages, and regular Web content
– Not for Velocity or WebMacro pages

• Security settings apply to
– Servlets, JSP pages, and regular Web content
– Not Velocity or WebMacro pages

• Initialization parameters defined forp
– Servlets and JSP pages
– Not Velocity or WebMacro pages

• Filters apply to• Filters apply to
– Servlets, JSP pages, and regular Web content
– Not Velocity or WebMacro pages

Listeners apply to

29

• Listeners apply to
– Servlets, JSP pages, and regular Web content
– Not Velocity or WebMacro pages

Sharing Data Among Web
ApplicationsApplications

• Failure:
Sessions Each Web app has its own set of sessions– Sessions. Each Web app has its own set of sessions.

– Standard ServletContext. Each Web app has a separate one.
– Static methods or fields. Each Web app uses a different

ClassLoader.ClassLoader.
• Success:

– Explicit cookies. Cookies are shared by the whole site (even the
whole top-level domain if set appropriately).p pp p y)

• Be sure to do cookie.setPath("/"), however.
– ServletContext associated with a specific URL.

ServletContext myContext =y
getServletContext();

String url = "/someWebAppPrefix";
ServletContext otherContext =

30

myContext.getContext(url);
Object someData =

otherContext.getAttribute("someKey");

Setting Shared Data: Example

public class SetSharedInfo extends HttpServlet {
public void doGet(HttpServletRequest request,

HttpServletResponse response)
throws ServletException, IOException {

HttpSession session = request.getSession(true);
session.setAttribute("sessionTest","Session Entry One");
ServletContext context = getServletContext();
context.setAttribute("servletContextTest",

"Servlet Context Entry One");
Cookie c1 = new Cookie("cookieTest1", "Cookie One");
c1.setMaxAge(3600); // One hour
response.addCookie(c1); // Default path
Cookie c2 = new Cookie("cookieTest2", "Cookie Two");
c2.setMaxAge(3600); // One hour
c2.setPath("/"); // Explicit path: all URLs
response.addCookie(c2);
String url = request.getContextPath() +

"/servlet/moreservlets.ShowSharedInfo";

31

// In case session tracking is based on URL rewriting.
url = response.encodeRedirectURL(url);
response.sendRedirect(url);

}}

Displaying Shared Data:
ExampleExample

public class ShowSharedInfo extends HttpServlet {
public void doGet(HttpServletRequest request,public void doGet(HttpServletRequest request,

HttpServletResponse response)
throws ServletException, IOException {

response.setContentType("text/html");
PrintWriter out = response.getWriter();
String title = "Shared Info";
out.println(ServletUtilities.headWithTitle(title) +

"<BODY BGCOLOR=\"#FDF5E6\">\n" +<BODY BGCOLOR=\ #FDF5E6\ >\n +
"<H1 ALIGN=\"CENTER\">" + title + "</H1>\n"+
"…");

HttpSession session = request.getSession(true);
…
ServletContext application = getServletContext();
…

li ti li ti tC t t("/ h T t1")

32

application = application.getContext("/shareTest1");
…
Cookie[] cookies = request.getCookies();

Accessing Web App Data:
Case 1Case 1

– SetSharedInfo run
from shareTest1from shareTest1

– ShowSharedInfo
also run from
shareTest1

– Results
• Found: session dataFound: session data
• Found: servlet context

data from normal
servlet contextservlet context

• Found: servlet context
data when explicitly
requesting servlet

33

requesting servlet
context from
shareTest1

• Found: all cookies

Accessing Web App Data:
Case 2Case 2

– SetSharedInfo run
from shareTest1from shareTest1

– ShowSharedInfo
run from shareTest2
R lt– Results

• Not found: session data
• Not found: servlet

context data fromcontext data from
normal servlet context

• Found: servlet context
data when explicitly

ti l trequesting servlet
context from
shareTest1

• Not found: cookies that

34

had default path
• Found: cookies with /

as path

Summary

• Web application benefits
Easy organization and deployment– Easy organization and deployment

– Isolation from other applications
• Structure

Top level directory or subdirectory other than WEB INF:– Top-level directory or subdirectory other than WEB-INF:
• JSP, HTML, other Web content

– WEB-INF
• web.xml

– WEB-INF/classes/directoryMatchingPackage
• Servlets, beans, utilities

• Creating a Web app in Eclipse
M k D i W b j– Make a new Dynamic Web project.

– Eclipse will create deployment structure automatically.
• Creating a Web app in Tomcat

M k di t ith t t (WEB INF d

35

– Make a directory with proper structure (e.g. WEB-INF and
WEB-INF/classes subdirectories)

– Copy to tomcat_dir/webapps.

© 2009 Marty Hall

Questions?

Customized Java EE Training: http://courses.coreservlets.com/
Servlets, JSP, Struts, JSF/MyFaces/Facelets, Ajax, GWT, Spring, Hibernate/JPA, Java 5 & 6.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

