1. This exercise concerns TM M_1 whose description and state diagram appear in the scanned example (from Sipser first edition), which is design to recognize the language $L = \{ y \in \{0,1,\#\}^* \mid \exists w \in \{0,1\}^* \ y = w\#w \}$. In each of the parts, give the sequence of configurations that M_1 enters when started on indicated input string.
 1. 00.
 2. 0\#0.
 3. 0\#0.
 4. 00\#01.
 5. 01\#01.

2. Give state diagrams (pictures) for Turing Machines that decide the following language over the alphabet \{0,1\}: \{ $w \mid w$ contains twice as many 1s as 0s \}.

3. If M_1 and M_2 are two (not necessarily halting) Turing machines, then there exists a Turing machine M such that $L(M) = L(M_1) \cup L(M_2)$. Prove the set equality, and be aware of infinite loops.

4. In Theorem 13 from the notes (various numbers in various Sipser editions) we showed that a language is Turing-recognizable if and only if some enumerator enumerates it. Why didn’t we use the following simpler algorithm for the "only if" part of the proof? As in the proof, s_1, s_2, \ldots is a list of all strings in Σ^*.
 A=“Ignore the input.
 1. Write down $w = s_1$
 2. Repeat the following for $i = 1, 2, 3 \ldots$
 3. Run M on w.
 4. If M accepts, print out w.
 5. Obtain new w from old w by the TM that constructs s_{i+1} from s_i”

5. A Turing machine with stay put instead of left is just like the normal TM except the transition function, which is:
 $\delta : Q \times \Gamma \to Q \times \Gamma \times \{R,S\}$.

The machine can only move its head right, or let it stay in the same position. Show that this type of Turing machine is not equivalent to the usual version; that is exhibit a language one type can recognize and the other cannot (proving all statements).