FIGURE 3.4 State diagram for Turing machine M_2 A sample run of M_2 on input 0000: | q_1 0000 | $\sqcup q_5$ х 0 х \sqcup | $\sqcup \mathbf{x} q_5 \mathbf{x} \mathbf{x} \sqcup$ | |---|---|--| | $\Box q_2$ 000 | q_5 ux 0 xu | $\sqcup q_5$ XXX \sqcup | | $\sqcup xq_3$ 00 | $\sqcup q_2$ x 0 x \sqcup | q_5 uxxxu | | $1 \times q_3$ | $\sqcup \mathbf{x} q_2 0 \mathbf{x} \sqcup$ | $\sqcup q_2$ XXX \sqcup | | $\sqcup x 0 x q_3 \sqcup$ | $\sqcup xxq_3x\sqcup$ | $\sqcup \mathbf{x} q_2 \mathbf{x} \mathbf{x} \sqcup$ | | $\sqcup x \circ q_5 x \sqcup$ | $\sqcup xxxq_3 \sqcup$ | $\sqcup xxq_2x\sqcup$ | | $\sqcup \mathbf{x}q_5 0\mathbf{x} \sqcup$ | $\sqcup xxq_5x\sqcup$ | $\sqcup \mathtt{xxx} q_2 \sqcup$ | | LAV ₅ VAL | 10 | $\sqcup xxx \sqcup q_{accep}$ | ## EXAMPLE 3.5 The following is a formal description of $M_1 = (Q, \Sigma, \Gamma, \delta, q_1, q_{\text{accept}}, q_{\text{reject}})$, the Turing machine that we informally described on page 127 for deciding the language $B = \{w \# w | w \in \{0,1\}^*\}$. - $Q = \{q_1, \dots, q_{14}, q_{\text{accept}}, q_{\text{reject}}\},$ - $\Sigma = \{0,1,\#\}$, and $\Gamma = \{0,1,\#,x,\sqcup\}$. - We describe δ with a state diagram (see Figure 3.5). - The start, accept, and reject states are q_1 , q_{accept} , and q_{reject} . In Figure 3.5 depicting the state diagram of TM M_1 , you will find the label $0.1 \rightarrow R$ on the transition going from q_3 to itself. That label means that the machine stays in q_3 and moves to the right when it reads a 0 or a 1 in state q_3 . It doesn't change the symbol on the tape. FIGURE 3.5 State diagram for Turing machine M_1 As in Example 3.4, the machine starts by writing a blank symbol to delimit the left-hand edge of the tape. This time it may overwrite a 0 or a 1 when doing so, and it remembers the overwritten symbol by using the finite control. Stage 1 is implemented by states q_1 through q_7 , and stages 2 and 3 by the remaining states. To simplify the figure, we don't show the reject state or the transitions going to the reject state. Those transitions occur implicitly whenever a state lacks an outgoing transition for a particular symbol. Thus, because in state q_5 no outgoing arrow with a # is present, if a # occurs under the head when the machine is in state q_5 , it goes to state q_{reject} .