

FIGURE 3.4 State diagram for Turing machine  $M_2$ 

A sample run of  $M_2$  on input 0000:

| $q_1$ 0000                                | $\sqcup q_5$ х $0$ х $\sqcup$               | $\sqcup \mathbf{x} q_5 \mathbf{x} \mathbf{x} \sqcup$ |
|-------------------------------------------|---------------------------------------------|------------------------------------------------------|
| $\Box q_2$ 000                            | $q_5$ ux $0$ xu                             | $\sqcup q_5$ XXX $\sqcup$                            |
| $\sqcup xq_3$ 00                          | $\sqcup q_2$ x $0$ x $\sqcup$               | $q_5$ uxxxu                                          |
| $1 \times q_3$                            | $\sqcup \mathbf{x} q_2 0 \mathbf{x} \sqcup$ | $\sqcup q_2$ XXX $\sqcup$                            |
| $\sqcup x 0 x q_3 \sqcup$                 | $\sqcup xxq_3x\sqcup$                       | $\sqcup \mathbf{x} q_2 \mathbf{x} \mathbf{x} \sqcup$ |
| $\sqcup x \circ q_5 x \sqcup$             | $\sqcup xxxq_3 \sqcup$                      | $\sqcup xxq_2x\sqcup$                                |
| $\sqcup \mathbf{x}q_5 0\mathbf{x} \sqcup$ | $\sqcup xxq_5x\sqcup$                       | $\sqcup \mathtt{xxx} q_2 \sqcup$                     |
| LAV <sub>5</sub> VAL                      | 10                                          | $\sqcup xxx \sqcup q_{accep}$                        |

## EXAMPLE 3.5

The following is a formal description of  $M_1 = (Q, \Sigma, \Gamma, \delta, q_1, q_{\text{accept}}, q_{\text{reject}})$ , the Turing machine that we informally described on page 127 for deciding the language  $B = \{w \# w | w \in \{0,1\}^*\}$ .

- $Q = \{q_1, \dots, q_{14}, q_{\text{accept}}, q_{\text{reject}}\},$
- $\Sigma = \{0,1,\#\}$ , and  $\Gamma = \{0,1,\#,x,\sqcup\}$ .
- We describe  $\delta$  with a state diagram (see Figure 3.5).
- The start, accept, and reject states are  $q_1$ ,  $q_{\text{accept}}$ , and  $q_{\text{reject}}$ .

In Figure 3.5 depicting the state diagram of TM  $M_1$ , you will find the label  $0.1 \rightarrow R$  on the transition going from  $q_3$  to itself. That label means that the machine stays in  $q_3$  and moves to the right when it reads a 0 or a 1 in state  $q_3$ . It doesn't change the symbol on the tape.



FIGURE 3.5 State diagram for Turing machine  $M_1$ 

As in Example 3.4, the machine starts by writing a blank symbol to delimit the left-hand edge of the tape. This time it may overwrite a 0 or a 1 when doing so, and it remembers the overwritten symbol by using the finite control.

Stage 1 is implemented by states  $q_1$  through  $q_7$ , and stages 2 and 3 by the remaining states. To simplify the figure, we don't show the reject state or the transitions going to the reject state. Those transitions occur implicitly whenever a state lacks an outgoing transition for a particular symbol. Thus, because in state  $q_5$  no outgoing arrow with a # is present, if a # occurs under the head when the machine is in state  $q_5$ , it goes to state  $q_{reject}$ .