1. Show that, if $P = NP$, a polynomial time algorithm exists that, given a satisfiable boolean formula Φ, actually produces a satisfying assignment for Φ. (Note: NP is a class of languages, and producing an assignment for a formula is a function. Thus simply saying that "because SAT is in NP, we are done" is not enough.)

2. **Knapsack** is the following problem: Given integers K and B, and items $\{1, 2, \ldots, n\}$ each with integer size s_i and integer profit p_i, find a subset $S \subseteq \{1, 2, \ldots, n\}$ such that $\sum_{i \in S} s_i \leq B$ and $\sum_{i \in S} p_i \geq K$. The common optimization problem is: we attempt to maximize K, the total profit, with a bound B on the total size of items one can pick.

 Formulate **Knapsack** as a language and prove the language is NP-Complete. The reduction must come from a problem claimed NP-Complete in the notes (use all the theorems from the notes even if we did not prove it yet in class).

3. Consider the following problem, called **SHORTEST SIMPLE $s - t$ PATH**: Given a directed graph $G = (V, E, w)$, where $w(e)$ is defined as a (possibly negative) integer for each edge $e \in E$, vertices $s, t \in V$, and a positive integer K, answer YES if there is a simple $s - t$ path of total weight at most K. An $s - t$ path starts at s and ends at t, a path is simple if it does not repeat any vertices, and the total weight of a path is the sum of the weights of its edges.

 Formulate the **SHORTEST SIMPLE $s - t$ PATH** problem as a language L_S. Then prove that L_S is NP-complete. Simplest reduction is from HAMPATH.