1. Show that \(P \) is closed under union, concatenation, complement, and the star operation.

 Hint (for star): Use dynamic programming.

2. EXACT3COVER (X3C) is the following problem: given a positive integer \(m \), and a sequence of subsets \(S_1, S_2, ..., S_r \subseteq U = \{1, 2, ..., m\} \), such that \(|S_i| = 3 \) for all \(i \), determine if there is a subset \(T \subseteq \{1, 2, ..., r\} \) such that \(\bigcup_{j \in T} S_j = U \) and \(\forall i, j \in T \) with \(i \neq j \) we have \(S_i \cap S_j = \emptyset \) (Such a set \(T \) of \(m/3 \) disjoint sets whose union is \(U \) is called an exact cover of \(U \)).

 Formulate X3C as a language. You can assume this X3C language is NP-hard and that all the theorems listed in the notes are true. Prove that X4C (formulate it as a language in a similar manner), described below, is NP-hard:

 EXACTCOVERBY4SETS (X4C) is the following problem: given a positive integer \(m \), and a sequence of subsets \(S_1, S_2, ..., S_r \subseteq U = \{1, 2, ..., m\} \), such that \(|S_i| = 4 \) for all \(i \), determine if there is a subset \(T \subseteq \{1, 2, ..., r\} \) such that \(\bigcup_{j \in T} S_j = U \) and \(\forall i, j \in T \) with \(i \neq j \) we have \(S_i \cap S_j = \emptyset \).

3. Consider the following problem, called SHORTEST SIMPLE \(s - t \) PATH: Given a directed graph \(G = (V, E, w) \), where \(w(e) \) is defined as a (possibly negative) integer for each edge \(e \in E \), vertices \(s, t \in V \), and a positive integer \(K \), answer YES if there is a simple \(s - t \) path of total weight at most \(K \). An \(s - t \) path starts at \(s \) and ends at \(t \), a path is simple if it does not repeat any vertices, and the total weight of a path is the sum of the weights of its edges.

 Prove that the SHORTEST SIMPLE \(s - t \) PATH problem is NP-hard. Simplest reduction is from HAMPATH.

4. Consider the following problem, called DOMINATING-SET: Given a graph \(G = (V, E) \), and an integer \(k \), is there a set of vertices \(A \subseteq V \) such that \(|A| = k \) and every vertex of \(V \) is either in \(A \) or has a neighbour in \(A \).

 Formulate DOMINATING-SET as a language and prove that this language is NP-hard. Hints: If you plan to use 3SAT, use three vertices for each variable and one vertex for each clause. If you plan to use VERTEX-COVER, add \(m + 2 \) vertices, where \(m \) is the number of edges in the original instance.

 Of course, there are correct solutions which ignore the hints.