CS 530: Theory of Computation

Based on Sipser (second edition):
Notes on regular languages (version 1.1)

Definition 1 (Alphabet) A alphabet is a finite set of objects called symbols.

Definition 2 (String) A string is a finite list of symbols from an alphabet.

Definition 3 (Length) If \(w \) is a string over \(\Sigma \), the length of \(w \), written \(|w| \), is the number of symbols that it contains.

Definition 4 (Empty string) The string of length zero is called the empty string and is written \(\epsilon \).

Definition 5 (Reverse) The reverse of \(w \), written \(w^R \), is the string obtained by writing \(w \) in the opposite order (i.e., \(w_nw_{n-1}\ldots w_1 \)).

Definition 6 (Substring) String \(z \) is a substring of \(w \) if \(z \) appears consecutively within \(w \).

Definition 7 (Prefix, Suffix) String \(z \) is a prefix of \(w \) if for all \(1 \leq i \leq |z| \) we have that \(z_i = w_i \). (\(z \) is a substring of \(w \) “starting” with \(w_1 \)).

String \(z \) is a suffix of \(w \) if for all \(0 \leq i \leq |z| - 1 \) we have that \(z_{|z|-i} = w_{|w|-i} \). (\(z \) is a substring of \(w \) “ending” with \(w_{|w|} \)).
Definition 8 (Concatenation) **Concatenation** is an operation that sticks strings from one set together with strings from another set.

Definition 9 (Lexicographic ordering) The **lexicographic ordering** of strings is the same as the familiar dictionary ordering, except that shorter strings precede longer strings.

Definition 10 (Language) A **language** is a set of strings.

Definition 11 (Definition 1.5, page 35) A **finite automaton** (also called **DFA**) is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q\) is a finite set called the **states**,
2. \(\Sigma\) is a finite set called the **alphabet**,
3. \(\delta : Q \times \Sigma \rightarrow Q\) is the **transition function**,
4. \(q_0 \in Q\) is the **start state** and
5. \(F \subseteq Q\) is the **set of accept states**.

Definition 12 (M accepts \(\omega\)) When machine \(M\) receives an input string \(\omega\), it processes that string and produces an output. The output is either **accept** or **reject**. The processing begins in \(M\)'s start state. The automaton receives the symbols from the input string one by one from left to right. After reading each symbol, \(M\) moves from one state to another along the transition that has that symbol as its label. When it reads the last symbol, \(M\) produces its output. If the output is accept, then \(M\) **accepts** \(\omega\).

More formal: Let \(M\) be the DFA \((Q, \Sigma, \delta, q_0, F)\) and \(w\) be a string over the alphabet \(\Sigma\). Then we say that \(M\) **reaches state** \(q\) **after processing** \(w = a_1a_2 \cdots a_m\), where each \(a_i\) is a member of \(\Sigma\), if a sequence of states \(r_0, r_1, \ldots, r_m\) exists in \(Q\) with the following three conditions:

1. \(r_0 = q_0\),
2. $r_{i+1} = \delta(r_i, a_{i+1})$, and

3. $r_m = q$.

We say that M accepts $w = a_1a_2\cdots a_m$, if M reaches state q after processing w and $q \in F$.

Definition 13 (M recognizes language A) If A is the set of all strings that machine M accepts, we say that A is the language of machine M and write $L(M) = A$. We say that M recognizes A.

Definition 14 (Definition 1.16, page 40) A language is called a regular language if some finite automaton recognizes it.

Definition 15 (Definition 1.23, page 44) Let A and B be languages. We define the regular operations union, concatenation, and star as follows.

- **Union:** $A \cup B = \{x | x \in A \text{ or } x \in B\}$.

- **Concatenation:** $A \circ B = \{xy | x \in A \text{ and } y \in B\}$.

- **Star:** $A^* = \{x_1x_2\cdots x_k | k \geq 0 \text{ and each } x_i \in A\}$.

Theorem 16 (Theorem 1.25, page 45) The class of regular languages is closed under the union operation. In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Theorem 17 (Theorem 1.26, page 47) The class of regular languages is closed under the concatenation operation. In other words, if A_1 and A_2 are regular languages, so is $A_1 \circ A_2$.
Definition 18 (Definition 1.37, page 53) A **nondeterministic finite automaton** (also called NFA) is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q\) is a finite set of states,
2. \(\Sigma\) is a finite alphabet,
3. \(\delta : Q \times \Sigma_\epsilon \rightarrow \mathcal{P}(Q)\) is the transition function,
4. \(q_0 \in Q\) is the start state, and
5. \(F \subseteq Q\) is the set of accept states.

Here \(\Sigma_\epsilon = \Sigma \cup \{\epsilon\}\).

Definition 19 (page 54) Let \(N\) be the NFA \((Q, \Sigma, \delta, q_0, F)\) and \(w\) be a string over the alphabet \(\Sigma\). Then we say that \(N\) can reach state \(q\) **after processing** \(w \in \Sigma^*\) if there exist a way to write \(w = a_1a_2 \cdots a_m\), where each \(a_i\) is a member of \(\Sigma_\epsilon\) and there exists a sequence of states \(r_0, r_1, \ldots, r_m\) exists in \(Q\) with the following three conditions:

1. \(r_0 = q_0\),
2. \(r_{i+1} \in \delta(r_i, a_{i+1})\), and
3. \(r_m = q\).

Then we say that \(N\) **accepts** \(w\) if \(N\) can reach state \(q\) after processing \(w\) and \(q \in F\).

Theorem 20 (Theorem 1.39, page 55) Every nondeterministic finite automaton has an equivalent deterministic finite automaton.

Corollary 21 (Corollary 1.40, page 56) A language is regular if and only if some nondeterministic finite automaton recognizes it.

Theorem 22 (Theorem 1.45, page 59) The class of regular languages is closed under the union operation.
Theorem 23 (Theorem 1.47, page 60) The class of regular languages is closed under the concatenation operation.

Theorem 24 (Theorem 1.49, page 62) The class of regular languages is closed under the star operation.

Definition 25 (Definition 1.52, page 64) Say that R is a regular expression if R is
1. a for some a in the alphabet Σ,
2. ϵ,
3. \emptyset,
4. $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions,
5. $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions, or
6. (R_1^*), where R_1 is a regular expressions.

In item 1 and 2, the regular expressions a and ϵ represent the languages $\{a\}$ and $\{\epsilon\}$, respectively. In item 3, the regular expression \emptyset represents the empty language. In items 4, 5, and 6, the expressions represent the languages obtained by taking the union or concatenation of the languages R_1 and R_2, or the star of the language R_1, respectively.

Theorem 26 (Theorem 1.54, page 66) A language is regular if and only if some regular expression describes it.

Lemma 27 (Lemma 1.55, page 67) If a language is described by a regular expression, then it is regular.

Lemma 28 (Lemma 1.60, page 69) If a language is regular, then it is described by a regular expression.
Definition 29 (Definition 1.64, page 73) A generalized nondeterministic finite automaton (GNFA), \((Q, \Sigma, \delta, q_{\text{start}}, q_{\text{accept}})\), is a 5-tuple where

1. \(Q\) is the finite set of states,
2. \(\Sigma\) is the input alphabet,
3. \(\delta : (Q - \{q_{\text{accept}}\}) \times (Q - \{q_{\text{start}}\}) \to R\) is the transition function,
4. \(q_{\text{start}}\) is the start state, and
5. \(q_{\text{accept}}\) is the accept state.

A GNFA accepts a string \(w\) in \(\Sigma^*\) if \(w\) can be written as \(w_1w_2 \cdots w_m\), where each \(w_i\) is a member of \(\Sigma^*\), and a sequence of states \(r_0, r_1, \ldots, r_m\) exists such that

1. \(r_0 = q_{\text{start}}\),
2. \(r_m = q_{\text{accept}}\), and
3. for each \(i\), we have \(w_i \in L(R_i)\), where \(R_i = \delta(q_{i-1}, q_i)\).

Claim 30 (Claim 1.65, page 74) For any GNFA \(G\), \(\text{CONVERT}(G)\) is equivalent to \(G\).

Theorem 31 (Theorem 1.70, page 78) Pumping lemma If \(A\) is a regular language, then there is a number \(p\) (the pumping length) where, if \(s\) is any string in \(A\) of length at least \(p\), then \(s\) may be divided into three pieces, \(s = xyz\), satisfying the following conditions:

1. for each \(i \geq 0\), \(xy^iz \in A\),
2. \(|y| > 0\), and
3. \(|xy| \leq p\).

Recall the notation where \(|s|\) represents the length of string \(s\), \(y^i\) means that \(i\) copies of \(y\) are concatenated together, and \(y^0\) equals \(\epsilon\).