
CS 530: Theory of Computation

Based on Sipser (second edition):
Notes on regular languages

Definition 1 (Alphabet) A alphabet is a finite set of objects called sym-

bols.

Definition 2 (String) A string is a finite list of symbols from an alphabet.

Definition 3 (Length) If w is a string over Σ, the length of w, written
|w|, is the number of symbols that it contains.

Definition 4 (Empty string) The string of length zero is called the empty

string and is written ǫ.

Definition 5 (Reverse) The reverse of w, written wR, is the string ob-

tained by writing w in the opposite order(i.e., wnwn−1 . . . w1).

Definition 6 (Substring) String z is a substring of w if z appears con-
secutively within w.

Definition 7 (Prefix, Suffix) String z is a prefix of w if for all 1 ≤ i ≤
|z| we have that zi = wi. ( z is a substring of w “starting” with w1).

String z is a suffix of w if for all 0 ≤ i ≤ |z| − 1 we have that z|z|−i =

w|w|−i. ( z is a substring of w “ending” with w|w|).

Definition 8 (Concatenation) Concatenation is an operation that sticks
two or more strings together, producing a string.
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Definition 9 (Lexicographic ordering) The lexicographic ordering of
strings is the same as the familiar dictionary ordering, except that shorter

strings precede longer strings.

Definition 10 (Language) A language over an alphabet Σ is a set of

strings with all their symbols from Σ.

Definition 11 (Complement) The complement of a language A over
an alphabet Σ is denoted by Ā, and is the set of all the strings over Σ that
are not in A.

Definition 12 (Definition 1.5, page 35) A finite automaton (also called
DFA) is a 5-tuple (Q,Σ, δ, q0, F ), where

1. Q is a finite set called the states,

2. Σ is a finite set called the alphabet,

3. δ : Q× Σ → Q is the transition function,

4. q0 ∈ Q is the start state and

5. F ⊆ Q is the set of accept states.

Definition 13 (M accepts ω) When machine M receives an input string
ω, it processes that string and produces an output. The output is either

accept or reject. The processing begins in M ’s start state. The automaton
receives the symbols from the input string one by one from left to right.

After reading each symbol, M moves from one state to another along the
transition that has that symbol as its label. When it reads the last symbol,
M produces its output. If the output is accept, then M accepts ω.

More formal: Let M be the DFA (Q,Σ, δ, q0, F ) and w be a string over
the alphabet Σ. Then we say that M reaches state q after processing

w = a1a2 · · · am, where each ai is a member of Σ, if a sequence of states
r0, r1, . . . , rm exists in Q with the following three conditions:
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1. r0 = q0,

2. ri+1 = δ(ri, ai+1), and

3. rm = q.

We say that M accepts w = a1a2 · · · am, if M reaches state q after
processing w and q ∈ F .

Definition 14 (M recognizes language A) If A is the set of all strings

that machine M accepts, we say that A is the language of machine M

and write L(M) = A. We say that M recognizes A.

Definition 15 (Definition 1.16, page 40) A language is called a regu-

lar language if some finite automaton recognizes it.

Definition 16 (Definition 1.23, page 44) Let A and B be languages. We

define the regular operations union, concatenation, and star as follows.

• Union: A ∪ B = {x|x ∈ A or x ∈ B}.

• Concatenation: A ◦ B = {xy|x ∈ A and y ∈ B} = {w | ∃x ∈ A ∃y ∈
B w = xy}.

• Star: A∗ = {x1x2...xk|k ≥ 0 and each xi ∈ A} = {w | ∃k ≥ 0 ∃x1 ∈
A ∃x2 ∈ A . . .∃xk ∈ A w = x1x2 · · ·xk}. Note that when k = 0, we

obtain that ǫ ∈ A∗ (for any language A).

Theorem 17 (Theorem 1.25, page 45) The class of regular languages is

closed under the union operation. In other words, if A1 and A2 are regular
languages, so is A1 ∪ A2.

Theorem 18 (Theorem 1.26, page 47) The class of regular languages is

closed under the concatenation operation. In other words, if A1 and A2 are
regular languages, so is A1 ◦ A2.
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Definition 19 (Definition 1.37, page 53) A nondeterministic finite

automaton (also called NFA) is a 5-tuple (Q,Σ, δ, q0, F ), where

1. Q is a finite set of states,

2. Σ is a finite alphabet,

3. δ : Q× Σǫ → P(Q) is the transition function,

4. q0 ∈ Q is the start state, and

5. F ⊆ Q is the set of accept states.

Here Σǫ = Σ ∪ {ǫ}.

Definition 20 (page 54) Let N be the NFA (Q,Σ, δ, q0, F ) and w be a

string over the alphabet Σ. Then we say that N can reach state q after

processing w ∈ Σ∗ if there exist a way to write w = a1a2 · · · am, where
each ai is a member of Σǫ and there exists a sequence of states r0, r1, . . . , rm
exists in Q with the following three conditions:

1. r0 = q0,

2. ri+1 ∈ δ(ri, ai+1), and

3. rm = q.

Then we say that N accepts w if N can reach state q after processing w

and q ∈ F .

Theorem 21 (Theorem 1.39, page 55) Every nondeterministic finite au-
tomaton has an equivalent deterministic finite automaton.

Corollary 22 (Corollary 1.40, page 56) A language is regular if and only
if some nondeterministic finite automaton recognizes it.

Theorem 23 (Theorem 1.45, page 59) The class of regular languages is
closed under the union operation.
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Theorem 24 (Theorem 1.47, page 60) The class of regular languages is
closed under the concatenation operation.

Theorem 25 (Theorem 1.49, page 62) The class of regular languages is
closed under the star operation.

Theorem 26 (proved as part of the proof of Theorem 4.5, page 169)
The class of regular languages is closed under complement.

Definition 27 (Definition 1.52, page 64) Say that R is a regular ex-

pression if R is

1. a for some a in the alphabet Σ,

2. ǫ,

3. ∅,

4. (R1 ∪ R2), where R1 and R2 are regular expressions,

5. (R1 ◦ R2), where R1 and R2 are regular expressions, or

6. (R∗
1), where R1 is a regular expressions.

In item 1 and 2, the regular expressions a and ǫ represent the languages
{a} and {ǫ}, respectively. In item 3, the regular expression ∅ represents

the empty language. In items 4, 5, and 6, the expressions represent the
languages obtained by taking the union or concatenation of the languages

R1 and R2, or the star of the language R1, respectively.

Theorem 28 (Theorem 1.54, page 66) A language is regular if and only

if some regular expression describes it.

Lemma 29 (Lemma 1.55, page 67) If a language is described by a reg-

ular expression, then it is regular.

Lemma 30 (Lemma 1.60, page 69) If a language is regular, then it is

described by a regular expression.
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Definition 31 (Definition 1.64, page 73) A generalized nondetermin-

istic finite automaton (GNFA), (Q,Σ, δ, qstart, qaccept), is a 5-tuple where

1. Q is the finite set of states,

2. Σ is the input alphabet,

3. δ : (Q− {qaccept})× (Q− {qstart}) → R is the transition function,

4. qstart is the start state, and

5. qaccept is the accept state.

A GNFA accepts a string w in Σ∗ if w can be written as w1w2 · · ·wm,

where each wi is a member of Σ∗, and a sequence of states r0, r1, . . . , rm
exists such that

1. r0 = qstart,

2. rm = qaccept, and

3. for each i, we have wi ∈ L(Ri), where Ri = δ(ri−1, ri).

Claim 32 (Claim 1.65, page 74) For any GNFA G, CONV ERT (G) is
equivalent to G.

Theorem 33 (Theorem 1.70, page 78) Pumping lemma If A is a reg-
ular language, then there is a number p (the pumping length) where, if s is
any string in A of length at least p, then s may be divided into three pieces,

s = xyz, satisfying the following conditions:

1. for each i ≥ 0, xyiz ∈ A,

2. |y| > 0, and

3. |xy| ≤ p.

Recall the notation where |s| represents the length of string s, yi means that

i copies of y are concatenated together, and y0 equals ǫ.
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