
CS 530: Theory of Computation. Based on Sipser second edi-
tion

Decidability

For convenience we use languages to represent various computational
problems because we have already set up terminology for dealing with

languages. For mathematical object B (be it a graph, DFA, CFG, TM,
etc.) we use 〈B〉 to denote an encoding of the object as a string (so that

we can give it as input to a Turing Machine). We say for 〈B〉 that B is a
graph (or DFA, etc.) if 〈B〉 is a valid encoding of a graph (or DFA, etc),

and that graphs is called B.
For example, the acceptance problem for DFAs of testing whether

a particular finite automaton accepts a given string can be expressed as
a language, ADFA. This language contains the encodings of all DFAs
together with strings that the DFAs accept.

Let ADFA = {〈B〉, w | B is a DFA that accepts input string w}.

Theorem 1 (Theorem 4.1, page 166) ADFA is a decidable language.

We can also prove a similar theorem for nondeterministic finite au-
tomata. Let ANFA = {〈B〉, w | B is a NFA that accepts input string

w}.

Theorem 2 (Theorem 4.2, page 167) ANFA is a decidable language.

Similarly, we can test whether a regular expression generates a given
string. Let AREX = {〈R〉, w | R is a regular expression that generates

string w}.

Theorem 3 (Theorem 4.3, page 168) AREX is a decidable language.

1



In the preceding theorems we had to determine whether a finite automa-
ton accepts a particular string. In the next theorem we determine whether

a finite automaton accepts any strings at all. Let EDFA = {〈A〉 | A is a
DFA and L(A) = ∅}.

Theorem 4 (Theorem 4.4, page 168) EDFA is a decidable language.

The next theorem states that determining whether two DFAs recognize
the same language is decidable. Let EQDFA = {〈A〉, 〈B〉 | A and B are
DFAs and L(A) = L(B)}.

Theorem 5 (Theorem 4.5, page 169) EQDFA is a decidable language.

In the proof, we construct a new DFA C from A and B, where C accepts

only those strings that are accepted by either A or B but not by both.
The language of C is

L(C) = (L(A) ∩ L(B)) ∪ (L(A) ∩ L(B)).

This expression is sometimes called the symmetric difference of L(A)

and L(B). Here L(A) is the complement of L(A).

Here describe algorithms to determine whether a CFG generates a par-

ticular string and to determine whether the language of a CFG is empty.
Let ACFG = {〈G〉, w | G is a CFG that generates string w}.

Theorem 6 (Theorem 4.7, page 170) ACFG is a decidable language.

As we did for DFAs, we can show that the problem of determining

whether a CFG generates any strings at all is decidable. Let ECFG =
{〈G〉 | G is a CFG and L(G) = ∅}.

Theorem 7 (Theorem 4.8, page 171) ECFG is a decidable language.

2



Let EQCFG = {〈G〉, 〈H〉 | G and H are CFGs and L(G) = L(H)}.

Now we show that every context-free language is decidable by a Turing
machine.

Theorem 8 (Theorem 4.9, page 172) Every context-free language is

decidable.

Now we turn to our first theorem that establishes the undecidability

of a specific language: the problem of testing whether a Turing machine
accepts a given input string. We call it ATM by analogy with ADFA and

ACFG. But, whereas ADFA and ACFG were decidable, ATM is not. Let
ATM = {〈M〉, w | M is a TM that accepts w}. ATM is sometimes called

the halting problem.

Theorem 9 (Theorem 4.11, page 174) ATM is Turing recognizable,

and undecidable.

Definition 10 (Definition 4.12, page 175) Assume that we have two

sets A and B and a function f from A to B. Say that f is one-to-

one if it never maps two different elements to the same place, that is, if

f(a) 6= f(b) whenever a 6= b. Say that f is onto if it hits every element

of B, that is, for every b ∈ B there is an a ∈ A such that f(a) = b. Say

that A and B are the same size if there is a one-to-one, onto function

f : A → B. A function that is both one-to-one and onto is called a

correspondence. In a correspondence every element of A maps to a

unique element of B and each element of B has a unique element of A

mapping to it. A correspondence is simply a way of pairing the elements

of A with the element of B.

Let N be the set of natural numbers {0, 1, 2, ...}.

3



Definition 11 (Definition 4.14, page 175) A set A is countable if

either it is finite or it has the same size as N .

Theorem 12 (Examples, pages 174-7) The set of even positive inte-

gers is countable. The set of positive rational numbers Q is countable.

Some infinite sets no correspondence with N exists. These sets are

called uncountable. Let R be the set of real numbers.

Theorem 13 (Theorem 4.17, page 177) R is uncountable.

Corollary 14 (Corollary 4.18, page 178) Some languages are not Turing-

recognizable.

In the proof, an infinite binary sequence is an unending sequence of 0s

and 1s. Let B be the set of all infinite binary sequences. Let L be the set
of all languages over alphabet Σ. Let Σ∗ = {s1, s2, s3, ...}. Each language

A ∈ L has a unique sequence in B. The ith bit of that sequence is a 1 if
si ∈ A and a 0 if si /∈ A, which is called the characteristic sequence of

A.

We say a language is co-Turing-recognizable if it is the complement

of a Turing-recognizable language.

Theorem 15 (Theorem 4.22, page 181) A language is decidable if and

only if it is both Turing-recognizable and co-Turing-recognizable.

In other words, a language is decidable if and only if both it and its

complement are Turing-recognizable.

Corollary 16 (Corollary 4.23, page 182) ATM is not Turing-recognizable.

4


