
CS 530: Theory of Computation. Based on Sipser second edi-
tion

Reducibility

In this chapter, we introduce the primary method for proving that

problems are computationally unsolvable. It is called reducibility.
A reduction is a way of converting one problem into another problem

in such a way that a solution to the second problem can be used to solve
the first problem.

As before, we use 〈B〉 to denote an encoding of a mathematical object

(such as TM or CFG) as a string.

We have already established the undecidability if ATM , the problem of
determining whether a Turing machine accepts a given input. Let’s con-

sider a related problem, HALTTM , the problem of determining whether
a Turing machine halts (by accepting or rejecting) on a given input. Let

HALTTM = {〈M〉, w | M is a TM and M halts on input w}.

Theorem 1 (Theorem 5.1, page 188) HALTTM is undecidable.

Let ETM = {〈M〉 | M is a TM and L(M) = ∅}.

Theorem 2 (Theorem 5.2, page 189) ETM is undecidable.

Let REGULARTM be the problem of determining whether a given
Turing machine has an equivalent finite automaton. This problem is the

same as determining whether the Turing machine recognizes a regular
language. Let REGULARTM = {〈M〉 | M is a TM that L(M) is a

regular language }.

Theorem 3 (Theorem 5.3, page 191) REGULARTM is undecidable.

The following theorem shows that testing the equivalence of two Turing

machines is an undecidable problem. We could prove it by a reduction
from ATM , but we use this opportunity to give an example of an unde-

cidability proof by reduction from ETM . Let EQTM = {〈M1〉, 〈M2〉 | M1

and M2 are TMs and L(M1) = L(M2)}.

1



Theorem 4 (Theorem 5.4, page 192) EQTM is undecidable.

Definition 5 (Definition 5.5, page 193) Let M be a Turing machine
and w an input string. An accepting computation history for M

on w is a sequence of configurations, C1, C2, ..., Cl, where C1 is the start
configuration of M on w, Cl is an accepting configuration of M , and each

Ci legally follows from Ci−1 according to the rules of M . A rejecting

computation history for M on w is defined similarly, except that Cl is
a rejecting configuration.

Definition 6 (Definition 5.6, page 193) A linear bounded automa-

ton is a restricted type of Turing machine wherein the tape head isn’t
permitted to move off the portion of the tape containing the input. If the

machine tries to move its head off either end of the input, the head stays
where it is, in the same way that the head will not move off the left-hand

end of an ordinary Turing machine’s tape.

Let ALBA = {〈M〉w; | M is an LBA that accepts string w}.

Lemma 7 (Lemma 5.8, page 194) Let M be an LBA with q states and
g symbols in the tape alphabet. There are exactly qngn distinct configura-

tions of M for a tape of length n.

Theorem 8 (Theorem 5.9, page 194) ALBA is decidable.

Theorem 5.9 shows that LBAs and TMs differ in one essential way: For
LBAs the acceptance problem is decidable, but for TMs it isn’t. However,

certain other problems involving LBAs remain undecidable. One is the
emptiness problem ELBA = {〈M〉 | M is an LBA where L(M) = ∅}.

Theorem 9 (Theorem 5.10, page 195) ELBA is undecidable.

We can also use the technique of reduction via computation histories
to establish the undecidable of certain problems related to context-free

grammars and pushdown automata. Let ALLCFG = {〈G〉 | G is an CFG
and L(G) = Σ∗}.

2



Theorem 10 (Theorem 5.13, page 197) ALLCFG is undecidable.

We give an example of an undecidable problem concerning simple ma-

nipulations of strings. It is called the Post correspondence problem,
or PCP.

We can describe this problem easily as a type of puzzle. We begin with
a collection of dominos, each containing two strings, one on each side. An

individual domino looks like
[
a

ab
]

and a collection of dominos looks like

{[
a

ab
], [

b

ca
], [

ca

a
], [

a

ab
], [

abc

c
]}

The task is to make a list of these dominos (repetitions permitted) so
that the string we get by reading off the symbols on the top is the same
as the string of symbols on the bottom. This list is called a match.

An instance of the PCP is a collection P of dominos:

P = {[
t1

b1
], [

t2

b2
], ..., [

tk

bk
]}.

and a match is a sequence i1, i2, ..., il, where ti1, ti2, ...til = bi1, bi2, ...bil. The

problem is to determine whether P has a match. Let PCP = {〈P 〉 | P is
an instance of the Post correspondence problem with a match }.

Theorem 11 (Theorem 5.15, page 200) PCP is undecidable.

In the proof, we first modify the PCP to require that a match starts

with the first domino,

[
t1

b1
].

Later we show how to eliminate this requirement. We call this problem the
modified Post correspondence problem, MPCP. Let MPCP = {〈P 〉 | P is
an instance of the Post correspondence problem with a match that starts

with the first domino}.

3



Definition 12 (Definition 5.17, page 206) A function f : Σ∗ → Σ∗

is a computable function if some Turing machine M , on every input

w, halts with just f(w) on its tape.

Definition 13 (Definition 5.20, page 207) Language A is mapping

reducible to language B, written A ≤m B, if there is a computable func-

tion f : Σ∗ → Σ∗, where for every w,

w ∈ A ⇐⇒ f(w) ∈ B.

The function f is called the reduction of A to B.

Theorem 14 (Theorem 5.22, page 208) If A ≤m B and B is decid-

able, then A is decidable.

Theorem 15 (Implicit from the proof above) For any three languages A,
B, C, if A ≤m B and B ≤m C, then A ≤m C.

Corollary 16 (Corollary 5.23, page 208) If A ≤m B and A is unde-
cidable, then B is undecidable.

Theorem 17 (Example 5.24, page 208) ATM ≤m HALTTM .

Theorem 18 (Example 5.26, page 209) ETM ≤m EQTM .

Theorem 19 (Example 5.27, page 209) ATM ≤m ETM .

Theorem 20 (Theorem 5.28, page 209) If A ≤m B and B is Turing-

recognizable, then A is Turing-recognizable.

Corollary 21 (Corollary 5.29, page 210) If A ≤m B and A is not
Turing-recognizable, then B is not Turing-recognizable.

Theorem 22 (Theorem 5.30, page 210) EQTM is neither Turing-recognizable
nor co-Turing-recognizable.

4


