
CS 530: Theory of Computation

Time Complexity

The number of steps that an algorithm uses on a particular input may
depend on several parameters. For simplicity we compute the running
time of an algorithm purely as a function of the length of the string rep-

resenting the input and don’t consider any other parameters. In worst-
case analysis, the form we consider here, we consider the longest running

time of all inputs of a particular length. In average-case analysis we
consider the average of all the running times of inputs of a particular

length.

Definition 1 (Definition 7.1, page 248) Let M be a deterministic Tur-

ing machine that halts on all inputs. The running time or time com-

plexity of M is the function f : N → N , where f(n) is the maximum

number of steps that M uses on any input of length n. If f(n) is the

running time of M , we say that M runs in time f(n) and that M is an

f(n) time Turing machine.

Because the exact running time of an algorithm often is a complex ex-
pression, we usually just estimate it. In one convenient form of estimation,

called asymptotic analysis, we seek to understand the running time of
the algorithm when it is run on large inputs. We do so by considering

only the highest order term of the expression for the running time of the
algorithm, disregarding both the co-efficient of that term and any lower

order terms. For example, the function f(n) = 6n3 + 2n2 + 20n+ 45 has
four terms. The asymptotic notation or big-O notation for describ-

ing this relationship is f(n) = O(n3). Let R+ be the set of real numbers
greater than 0.

Definition 2 (Definition 7.2, page 249) Let f and g be two functions

f, g : N → R+. Say that f(n) = O(g(n)) if positive integers c and n0

exist so that for every integer n ≥ n0

f(n) ≤ cg(n).

1



When f(n) = O(g(n)) we say that g(n) is an upper bound for f(n), or
more precisely, that g(n) is an asymptotic upper bound for f(n), to

emphasize that we are suppressing constant factors.

Frequently we derive bounds of the form nc for c greater than 0. Such
bounds are called polynomial bounds. Bounds of the form 2(n

δ) are

called exponential bounds when δ is a real number greater than 0.
Big-O notation has a companion called small-o notation. Big-O no-

tation says that one function is asymptotically no more than another. To

say that one function is asymptotically less than another we use small-o
notation.

Definition 3 (Definition 7.5, page 250) Let f and g be two functions

f, g : N → R+. Say that f(n) = o(g(n)) if

lim
n→∞

f(n)

g(n)
= 0.

In other words, f(n) = o(g(n)) means that, for any real number c > 0, a
number n0 exists, where f(n) < cg(n) for all n ≥ n0.

Definition 4 (Definition 7.7, page 251) Let t : N → R+ be a func-

tion. Define the time complexity class, TIME(t(n)), to be TIME(t(n)) =
{L|L is a language decided by an O(t(n)) time Turing machine }.

Theorem 5 (Theorem 7.8, page 254) Let t(n) be a function, where

t(n) ≥ n. Then every t(n) time multitape Turing machine has an equiv-

alent O(t2(n)) time single-tape Turing machine.

Definition 6 (Definition 7.9, page 255) Let N be a nondeterministic

Turing machine that is a decider. The running time of N is the function

f : N → N , where f(n) is the maximum number of steps that N uses on

any branch of its computation on any input of length n.

2



Theorem 7 (Theorem 7.11, page 256) Let t(n) be a function, where

t(n) ≥ n. Then every t(n) time nondeterministic single-tape Turing ma-

chine has an equivalent 2O(t(n)) time deterministic single-tape Turing ma-

chine.

Definition 8 (Definition 7.12, page 258) P is the class of languages

that are decidable in polynomial time on a deterministic single-tape Turing

machine. In other words,

P =
⋃

k

TIME(nk).

The class P plays a central role in our theory and is important because

1. P is invariant for all models of computation that are polynomially
equivalent to the deterministic single-tape Turing machine, and

2. P roughly corresponds to the class of problems that are realistically

solvable on a computer.

A Hamilton path in a directed graph G is a directed path that
goes through each node exactly once. We consider the problem of test-

ing whether a directed graph contains a Hamiltonian path connecting
two specified nodes. Let HAMPATH = {〈G〉, 〈s〉, 〈t〉|G is a directed

graph with a Hamiltonian path from s to t}. No one knows whether
HAMPATH is solvable in polynomial time.

TheHAMPATH problem does have a feature called polynomial ver-

ifiability. Even though we don’t know of a fast (i.e., polynomial time)
way to determine whether a graph contains a Hamiltonian path, if such

a path were discovered somehow (perhaps using the exponential time al-
gorithm), we could easily convince someone else of its existence, simply

by presenting it. In other words, verifying the existence of a Hamiltonian
path may be much easier than determining its existence.

Another polynomially verifiable problem is compositeness. Recall that
a natural number is composite if it is the product of two integers greater

3



than 1 (i.e., a composite number is one that is not a prime number).
Let COMPOSITES = {〈x〉 | x = pq for integers p, q > 1}. Here the

representation of an integer is that integer written in binary. We can
easily verify that a number is composite — all that is needed is a divisor
of that number.

Definition 9 (Definition 7.18, page 265) A verifier for a language

A over alphabet Σ is an algorithm V , where

A = {w | V accepts w@c for some string c}.

Here the symbol @ 6∈ Σ. We measure the time of a verifier only in terms

of the length of w, so a polynomial time verifier runs in polynomial

time in the length of w. A language A is polynomially verifiable if it

has a polynomial time verifier.

A verifier uses additional information, represented by the symbol c in Def-
inition 7.18, to verify that a string w is a member of A. This information
is called a certificate, or proof, of membership in A.

Definition 10 (Definition 7.19, page 266) NP is the class of languages

that have polynomial time verifiers.

The term NP comes from nondeterministic polynomial time and is
derived from an alternative characterization by using nondeterministic

polynomial time Turing machines.

Theorem 11 (Theorem 7.20, page 266) A language is in NP iff it is

decided by some nondeterministic polynomial time Turing machine.

Definition 12 (Definition 7.21, page 267) NTIME(O(t(n))) = {L|L
is a language decided by a O(t(n)) time nondeterministic Turing machine

}.

Corollary 13 (Corollary 7.22, page 267) NP =
⋃

k
NTIME(nk).

4


