
CS 530: Theory of Computation

Time Complexity (Cont.)

A clique in an undirected graph is a subgraph, wherein every two nodes

are connected by an edge. A k-clique is a clique that contains k nodes.
The clique problem is to determine whether a graph contains a clique of

a specified size. Let CLIQUE = {〈G〉, 〈k〉|G is an undirected graph with
a k-clique }. An independent set in in an undirected graph is a sub-

graph, wherein no two nodes are connected by an edge. The problem is
to determine whether a graph contains a clique of a specified size. Let
INDEPENDENT − SET = {〈G〉, 〈k〉|G is an undirected graph with an

independent set of size k}, where 〈k〉 is an encoding of a positive integer
(base 2).

Theorem 1 (Theorem 7.24, page 268) CLIQUE is in NP.

In SUBSET − SUM problem we have a collection of numbers, x1, ..., xk

and a target number t. We want to determine whether the collection con-
tains a subcollection that adds up to t. Thus, we define the language

(where integers are represented in binary): SUBSET-SUM= {〈S〉, 〈t〉|S =
{x1, ..., xk} and for some {y1, ..., yl} ⊆ {x1, ..., xk}, we have

∑
yi = t. Notice

that {y1, ..., yl} and {x1, ..., xk} are considered to be multisets and so allow
repetition of elements.

Theorem 2 (Theorem 7.25, page 269) SUBSET − SUM is in NP.

One important advance on the P versus NP question came in the early

1970s with the work of Stephen Cook and Leonid Levin. They discovered
certain problems in NP whose individual complexity is related to that of the

entire class. If a polynomial time algorithm exists for any of these problems,
all problems in NP would be polynomial time solvable. These problem are
called NP-complete.

The first NP-complete problem that we present is called the satisfiability
problem. Recall that variables that can take on the values TRUE and

1



FALSE are called Boolean variables. Usually, we represent TRUE by 1
and FALSE by 0. The Boolean operations AND, OR, and NOT, represented

by the symbols ∧, ∨, ¬ and , respectively. We use the overbar as a shorthand
for the ¬ symbol, so x̄ means ¬x. A Boolean formula is an expression

involving Boolean variables and operations. For example, φ = (x̄∨y)∧(x∨z̄)
is a Boolean formula. A boolean formula is satisfiable is some assignment

of 0s and 1s to the variables makes the formula evaluate to 1. The preceding
formula is satisfiable because the assignment x = 0, y = 1, and z = 0 makes

φ evaluate to 1. We say the assignment satisfies φ. The satisfiability
problem is to test whether a Boolean formula is satisfiable. Let SAT =
{〈φ〉| φ is a satisfiable Boolean formula }.

Theorem 3 (Theorem 7.27, page 272)

Cook-Levin theorem SAT ∈ P iff P = NP

Definition 4 (Definition 7.28, page 272)
A function f : Σ∗ → Σ∗ is a polynomial time computable function if

some polynomial time Turing machine M exists that halts with just f(w) on
its tape, when started on any input w.

Definition 5 (Definition 7.29, page 272)

Language A is polynomial time mapping reducible1, or simply poly-

nomial time reducible, to language B, written A ≤P B, if a polynomial
time computable function f : Σ∗ → Σ∗ exists, where for every w,

w ∈ A ⇐⇒ f(w) ∈ B.

The function f is called the polynomial time reduction of A to B.

Theorem 6 (Theorem 7.31, page 273)

For any two languages A, B, if A ≤P B and B ∈ P , then A ∈ P .

1Is is called polynomial time many-one reducibility in some other textbooks.

2



Theorem 7 (Implicit from the proof above) For any three languages A, B,
C, if A ≤P B and B ≤P C, then A ≤P C.

A literal is a Boolean variable or a negated Boolean variable, as in x and
x̄. A clause is several literals connected with ∨s. A Boolean formula is in

conjunctive normal form, called a cnf-formula, if it comprises several
clauses connected with ∧s. It is a 3cnf-formula if all the clauses have three

literals, as in

(x1 ∨ x2 ∨ x3) ∧ (x3 ∨ x2 ∨ x6) ∧ (x3 ∨ x7 ∨ x1) ∧ (x4 ∨ x5 ∨ x6).

Let 3SAT = {〈φ〉| φ is a satisfiable 3cnf-formula formula }. In a satisfiable
cnf-formula, each clause must contain at least one literal that is assigned 1.

Theorem 8 (Theorem 7.32, page 274)
3SAT is polynomial time reducible CLIQUE.

Definition 9 (Definition 7.34, page 276)
A language B is NP-complete if it satisfies two conditions:

1. B is in NP, and

2. every A in NP is polynomial time reducible to B.

Theorem 10 (Theorem 7.35, page 276)

If B is NP-complete and B ∈ P , then P = NP .

Theorem 11 (Theorem 7.36, page 276)
If B is NP-complete and B ≤P C for C in NP, then C is NP-complete.

Theorem 12 (Theorem 7.37, page 276)

SAT is NP-complete.

This theorem restates Theorem 7.27, the Cook-Levin theorem, in another
form.

3



Claim 13 (Claim 7.41, page 280)
If the top of the table is the start configuration and every window in the

table is legal, each row of the table is a configuration that legally follows the
preceding one.

Corollary 14 (Corollary 7.42, page 282)
3SAT is NP-complete.

Corollary 15 (Corollary 7.43, page 283)
CLIQUE is NP-complete.

If G is an undirected graph, a vertex cover of G is a subset of the nodes
where every edge of G touches one of those nodes. The vertex cover problem

asks whether a graph contains a vertex cover of a specified size: VERTEX-
COVER= {〈G〉, 〈k〉| G is an undirected graph that has a k-node vertex

cover }.

Theorem 16 INDEPENDENT-SET is NP-complete.

Theorem 17 (Theorem 7.44, page 284)
VERTEX-COVER is NP-complete.

Theorem 18 (Theorem 7.46, page 286)
HAMPATH is NP-complete.

Next we consider an undirected version of the Hamiltonian path problem,

called UHAMPATH.

Theorem 19 (Theorem 7.55, page 291)
UHAMPATH is NP-complete.

Theorem 20 (Theorem 7.56, page 292)

SUBSET − SUM is NP-complete.

4


