CS 535 Design and Analysis of Algorithms Fall Semester, 2021 Extra set of problems

Assigned: Dec. 1

Will not be collected/graded

Variations of the following problems might appear on the final exam. No solutions for this set of problems will be posted.

Problem 1 Problem 24.1-3 from the textbook.

Problem 2 Assume that you *only* know that the problems from the handout are NP-complete. Consider the following decision problem, called BIN-PACKING: Given a list of positive integers (all numbers here written in binary) $x_1, ..., x_k$, an integer m, and another integer B, called *bin capacity*, is there a partition of $\{1, 2, ..., k\}$ into sets U_i , for i = 1, 2, ..., m, (and therefore $\bigcup_{i=1}^m U_i = \{1, 2, ..., k\}$) such that, for all i = 1, 2, ..., m, we have that $\sum_{j \in U_i} x_j \leq B$ (items packed in a bin do not exceed capacity). Prove that BIN-PACKING is NP-Complete.

Recommended but not required: Use the hardness of SUBSET - SUM.

Problem 3 A multiple source-sink network is a tuple G = (V, E, c, S, T), where V is a set of vertices, E is a set of directed edges (parallel edges are allowed), $S \subset V$ is the set of sources, and $T \subset V$ is the set of sinks, c is a capacity function: $c : E \to Z_+$. Also, $S \cap T = \emptyset$. That is, sources are distinct from sinks.

A function $f: E \to R_+$ is called a *flow* if the following three conditions are satisfied:

1. conservation of flow at interior vertices: for all vertices u not in $S \cup T$,

$$\sum_{e \in \delta^-(u)} f(e) = \sum_{e \in \delta^+(u)} f(e) ;$$

2. capacity constraints: $f \leq c$ pointwise: i.e. for all $e \in E$,

$$f(e) \le c(e) \; .$$

Assume that non-negative quantities p_s , for $s \in S$, and q_t , for $t \in T$, are given. The goal of this problem is to determine if a valid flow exists such that for all $s \in S$:

$$\sum_{e\in\delta^+(s)}f(e)-\sum_{e\in\delta^-(s)}f(e)=p_s$$

and such that for all $t \in T$:

$$\sum_{e \in \delta^-(t)} f(e) - \sum_{e \in \delta^+(t)} f(e) = q_t.$$

Use Network Flows to give a polynomial-time algorithm for this **decision** problem (the answer is YES or NO). Hint: read chapter 26.1 of the textbook.

Problem 4 Problem 22-2 from the textbook.