1 Network Flows Definitions

A **network** is a tuple G = (V, E, c, s, t), where V is a set of vertices, E is a set of directed edges (parallel edges are allowed), $s \in V$ is the **source**, $t \in V$ is the **sink**, c is a **capacity** function: $c: E \to Z_+$.

For set of vertices $A \subseteq V$, define $\delta^+(A) = \{e \mid tail(e) \in A \land head(e) \notin A\}$, and $\delta^-(A) = \{e \mid tail(e) \notin A \land head(e) \in A\}$. We write $\delta^-(u)$ and $\delta^+(u)$ instead of $\delta^-(\{u\})$ and $\delta^+(\{u\})$ respectively.

Definition 1 A function $f : E \to R_+$ is called a *flow* if the following three conditions are satisfied:

1. conservation of flow at interior vertices: for all vertices u not in $\{s, t\}$,

$$\sum_{e \in \delta^-(u)} f(e) = \sum_{e \in \delta^+(u)} f(e) ;$$

2. capacity constraints: $f \leq c$ pointwise: i.e. for all $e \in E$,

$$f(e) \le c(e)$$

Definition 2 The value of a flow f, denoted by |f|, is defined to be

$$|f| = \sum_{e \in \delta^+(s)} f(e) - \sum_{e \in \delta^-(s)} f(e).$$

We say that e is **saturated** if f(e) = c(e).

Definition 3 An *s*-*t* cut (or just cut, when *s* and *t* are understood) is a pair (A, B) of disjoint subsets of *V* whose union is *V* such that $s \in A$ and $t \in B$. The capacity of the cut (A, B), denoted by c(A, B), is

$$c(A,B) = \sum_{e \in \delta^+(A)} c(e) \; .$$

If f is a flow, we define the flow across the cut (A,B) to be

$$f(A,B) = \sum_{e \in \delta^+(A)} f(e) - \sum_{e \in \delta^-(A)} f(e) .$$

Lemma 1.1 For any s - t cut (A, B), f(A, B) = |f|.

Definition 4 Given a flow f on a network G define the residual network G_f as follows: For every $e \in E$ with f(e) < c(e), add an edge e' in G_f with $c_f(e') = c(e) - f(e)$; e' is the forward edge obtained from e. For every $e \in E$ with f(e) > 0, add an edge \overline{e} in G_f with $c_f(\overline{e}) = f(e)$; \overline{e} is the back edge obtained from e. G_f has the same s and t.

Definition 5 Given a network G and flow f on G, an *augmenting path* is a directed path from s to t in the residual network G_f .

Lemma 1.2 Given f' a flow in G_f , consider the function $\hat{f} : E \to R_+$ defined by $\hat{f}(e) = f(e) + f'(e') - f'(\overline{e})$, where e' and \overline{e} are the forward and back edge obtained from e. Then \hat{f} is a flow in G with $|\hat{f}| = |f| + |f'|$.

Given \hat{f} is a flow in G, consider the function $f': E_f \to R_+$ defined as follows: if for edge $e \in E$ we have $f(e) < \hat{f}(e)$, then for the forward edge obtained from e we have $f'(e') = \hat{f}(e) - f(e)$, and if for edge $e \in E$ we have $f(e) > \hat{f}(e)$, then for the back edge obtained from e we have $f'(\overline{e}) = f(e) - \hat{f}(e)$, with f' being zero on the other edges of G_f . Then f' is a flow in G_f with $|f'| = |\hat{f}| - |f|$.

The main theorem in Network Flows is the following MaxFlow-MinCut Theorem:

Theorem 1.3 Let G = (V, E, c, s, t) be a network and f be a flow in G. The following three conditions are equivalent:

- 1. f is a maximum flow in G.
- 2. The residual network G_f contains no augmenting paths.
- 3. |f| = c(A, B) for some s-t cut (A, B).

The "flow-decomposition theorem" is:

Theorem 1.4 Let f be a flow in G. Then there exists paths s - t paths P_1, \ldots, P_k with positive integers $\alpha_1, \ldots, \alpha_k$ and circuits C_1, \ldots, C_q with positive integers β_1, \ldots, β_q , with $0 \le k + q \le |E|$, such that for all $e \in E$,

$$f(e) = \sum_{i \in \{1, \dots, k\} \land e \in P_i} \alpha_i + \sum_{j \in \{1, \dots, q\} \land e \in P_j} \beta_j$$

and $|f| = \sum_{i=1}^k \alpha_i$.

2 The Ford-Fulkerson Algorithm

BELLMAN-FORD-FULKERSON(G,s,t)

- 1. for each edge $e \in E(G)$
- 2. do $f(e) \leftarrow 0$
- 3. Construct G_f
- 4. while there exists a path P from s to t in the residual net work G_f

5. do
$$c_f(P) \leftarrow \min_{e \in P} c_f(e)$$

- 6. **for** each edge a in P
- 7. **do if** a is a forward edge: a = e' for some $e \in E$

8.
$$f(e) \leftarrow f(e) + c_f(P)$$

- 9. **else** $(a = \overline{e} \text{ for some } e \in E)$
- 10. $f(e) \longleftarrow f(e) c_f(P)$

3 Matching Definitions

Given an undirected graph G = (V, E), a **matching** is a subset $M \subseteq E$ such that no two edges in M share a vertex.

Definition 6 Given a matching M in G = (V, E), an edge $e \in E$ is *matched* if $e \in M$, and *free* if $e \in E \setminus M$. A vertex v is *matched* if v has an incident matched edge, and *free* otherwise.

Definition 7 A *perfect matching* is a matching in which every vertex is matched.

Definition 8 Given a matching M in G = (V, E), a path (cycle) in G is an alternating path (cycle) with respect to the matching M if it is simple (has no repeated vertices) and consists of alternating matched and free edges. An alternating path is an *augmenting path* (with respect to M) if its endpoints are free.

Definition 9 A graph G = (V, E) is bipartite iff V can be partitioned in A and B such that every edge of E has one endpoint in A and one endpoint in B.

Fact 3.1 A graph is bipartite iff it does not have any odd cycle.

Definition 10 If G = (V, E) is an undirected graph, a **vertex cover** of G is a subset of V where every edge of G is adjacent to one node in this subset. The minimum vertex cover problem asks for the size of the smallest vertex cover. An **edge cover** of G is a subset subset of E where every vertex of G is adjacent to one edge in this subset. The minimum edge cover problem asks for the size of the smallest edge cover.

Fact 3.2 For any graph G = (V, E), any $M \subseteq E$ matching in G and Q vertex cover in G, $|M| \leq |Q|$.

Theorem 3.3 In a bipartite graph, the size of a maximum matching equals the size of the minimum vertex cover.