1. What happens to the quality of the approximation in APPROX-VERTEX-COVER (page 1109 in CLRS3) if line 5 is changed to “$C = C \cup \{u\}$” and line 6 is changed to “remove from E' every edge incident on u”? That is, only one endpoint of the edge is added to the vertex cover. Prove your answer.

2. Suppose we do a DFS on an undirected, connected graph G.

 (a) Prove that the set of non-leaf vertices of the resulting DFS tree forms a vertex cover of G.

 (b) Prove that the vertex cover thus obtains contains no more than twice the number of vertices in a minimum vertex cover.

 (c) Describe an infinite family of graphs for which this heuristic finds a vertex cover of twice the size of a minimum vertex cover.

3. PhD Qualifying Exam Section Problem 14.

 On November 8, the lecture described Christofides’ approximation algorithm for the traveling salesman problem for n points in the plane (whose distances therefore satisfy the triangle inequality). Suppose you are given two vertices s and t and asked for a minimum cost Hamiltonian path from s to t (not a cycle as in the TSP). Describe an algorithm that finds a Hamiltonian path that is no more than $5/3$ times the optimal Hamiltonian path from s to t. Prove that bound for your algorithm.