Problem 1 Let \(G = (V, E, c, s, t) \) be a flow network with integer capacities, and \(f \) be a feasible flow with integer values. Suppose there is an edge \(e \) with head \(s \) and such that \(f(e) = 1 \). Describe an \(O(|V| + |E|) \) algorithm (An English explanation may be enough) that produces another feasible flow \(f' \) with \(|f| \leq |f'| \) and such that \(f'(e) = 0 \).

Be precise though: if you use an algorithm from the textbook, explain which graph is the input of the algorithm. Justify the overall running time and correctness.

Problem 2 A multiple source-sink network is a tuple \(G = (V, E, c, S, T) \), where \(V \) is a set of vertices, \(E \) is a set of directed edges (parallel edges are allowed), \(S \subset V \) is the set of sources, and \(T \subset V \) is the set of sinks, \(c \) is a capacity function: \(c : E \rightarrow \mathbb{Z}_+ \). Also, \(S \cap T = \emptyset \). That is, sources are distinct from sinks.

A function \(f : E \rightarrow \mathbb{R}_+ \) is called a flow if the following three conditions are satisfied:

1. conservation of flow at interior vertices: for all vertices \(u \) not in \(S \cup T \),
 \[
 \sum_{e \in \delta^-(u)} f(e) = \sum_{e \in \delta^+(u)} f(e);
 \]

2. capacity constraints: \(f \leq c \) pointwise: i.e. for all \(e \in E \),
 \[
 f(e) \leq c(e). \]

Assume that non-negative quantities \(p_s \), for \(s \in S \), and \(q_t \), for \(t \in T \), are given. The goal of this problem is to determine if a valid flow exists such that for all \(s \in S \):

\[
\sum_{e \in \delta^+(s)} f(e) - \sum_{e \in \delta^-(s)} f(e) = p_s
\]

and such that for all \(t \in T \):

\[
\sum_{e \in \delta^-(t)} f(e) - \sum_{e \in \delta^+(t)} f(e) = q_t.
\]

Use Network Flows to give a polynomial-time algorithm for this decision problem (the answer is YES or NO). Hint: read chapter 26.1 of the textbook.

Problem 3 The edge connectivity of an undirected multigraph is the minimum number \(k \) of edges that must be removed to disconnect the graph. For example, the edge connectivity of a tree is 1, and the edge connectivity of a cyclic chain of vertices is 2. Show how to determine the edge connectivity of an undirected multigraph \(G = (V, E) \) by running a maximum-flow algorithm on at most \(|V| \) flow networks, each having \(O(|V|) \) vertices and \(O(|E|) \) edges.

Argue correctness.