Dynamic Programming Solution for TSP

CS 535 Design and Analysis of Algorithms
Fall Semester, 2018

Dynamic programming does not always yield polynomial-time algorithms (a fact that the text does not discuss), but even when it gives exponential-time algorithms, it can provide a useful framework for algorithm design. In this section we’ll look at such an example, the Travelling Salesman Problem, or TSP for short.

In the TSP, we are given \(n \) cities and a distance matrix \(C \) in which \(C_{ij} \) is the distance from city \(i \) to city \(j \). These distances do not have to correspond to physical distances; they are costs. Because they are costs, they do not need to satisfy constraints such as symmetry (the distance from \(i \) to \(j \) need not be the same as the distance from \(j \) to \(i \)) or the triangle inequality (it is not necessarily shorter to go from \(i \) to \(j \) directly—it mean be cheaper to go from \(i \) to \(k \) to \(j \)). We need to route a salesman from his home city, arbitrarily called city 1, through all other \(n - 1 \) cities and then back home to city 1. Such a routing is called a tour. The TSP is to find the cheapest tour.

There are \((n - 1)!\) possible tours (why?), so a brute-force examination of the cost of each tour would take time \((n - 1) \times (n - 1)! \) because it would take \(n - 1 \) additions to compute the cost of each tour (this could be improved by choosing successive tours that differ only by the interchange of two cities). With a dynamic programming approach we can improve this time bound to \(O(n^2 \times 2^n) \).

We define

\[
T(i; j_1, j_2, \ldots, j_k) = \begin{cases}
\text{cost of the optimal tour from city } i \text{ to city 1 that goes through each of the intermediate cities } j_1, j_2, \ldots, j_k \text{ exactly once, in any order, and through no other cities.}
\end{cases}
\]

The optimal substructure property tells us that

\[
T(i; j_1, j_2, \ldots, j_k) = \min_{1 \leq m \leq k} \{C_{ij_m} + T(j_m; j_1, j_2, \ldots, j_{m-1}, j_{m+1}, \ldots, j_k)\}.
\]

Furthermore,

\[
T(i; \emptyset) = C_{i1}.
\]

The value we want is

\[
T(1; 2, 3, \ldots, n).
\]

Without memoization, direct evaluation of \(T(i; j_1, j_2, \ldots, j_k) \) takes time \(\Theta(k) \) time plus the time for the \(k \) recursive calls; if \(t(k) \) is the order of the time needed for \(k \) intermediate cities,

\[
t(k) = k + k \times t(k - 1)
\]

and \(t(0) \) is constant. The overall time is then \(t(n - 1) > (n - 1)! \).

With memoization, there are \(n - 1 \) choices for city \(i \) and \(\binom{n-2}{k} \) sets of \(k \) intermediate cites chosen from among all cities except cities 1 and \(i \). The total number of memos [including the memo for \(T(1; 2, 3, \ldots, n) \)] is thus

\[
1 + \sum_{k=1}^{n-2} (n - 1) \binom{n-2}{k} = 1 + (n - 1) \sum_{k=1}^{n-2} \binom{n-2}{k} = 1 + (n - 1)(2^{n-2} - 1).
\]
Evaluating a memo once all the needed memos are available is $O(n)$, so the overall cost of the memoized algorithm is $O(n^2 2^n)$.