CS 535: Analysis of Algorithms

NP-completeness

(based in part on the CS 530 textbook, written by Sipser)

A Hamilton path in a directed graph G is a directed path that goes through each node exactly once. We consider the problem of testing whether a directed graph contains a Hamiltonian path connecting two specified nodes s and t, and call it HAMPATH. No one knows whether $H A M P A T H$ is solvable in polynomial time.

Definition $1 P$ is the class of decision problems that have polynomial time algorithms. $N P$ is the class of decision problems that have polynomial time "verifiers".

The verifier is a unrealistically powerful "nondeterministic" computer, provably no worse than supercomputers or quantum computers. The term NP comes from nondeterministic polynomial time.

NOTE: the degree of the polynomial does not matter (as long as it a constant)!
If G is an undirected graph, a vertex cover of G is a subset of the nodes where every edge of G touches one of those nodes. The vertex cover problem asks whether a graph contains a vertex cover of a specified (given, as part of the input) size.

Theorem 2 One can find a hamiltonian path in polynomial time with access to a polynomialtime algorithm for the decision problem HAMPATH.

One can find a minimum-size vertex cover in polynomial-time if one can decide VERTEX - COVER.

In the $S U B S E T-S U M$ decision problem we have a collection of numbers, x_{1}, \ldots, x_{k} and a target number t. We want to determine whether the collection contains a subcollection $\left\{y_{1}, \ldots, y_{l}\right\}$ that adds up to t. Notice that $\left\{y_{1}, \ldots, y_{l}\right\}$ and $\left\{x_{1}, \ldots, x_{k}\right\}$ are considered to be multisets and so allow repetition of elements.

A clique in an undirected graph is a subgraph, wherein every two nodes are connected by an edge. A k-clique is a clique that contains k nodes. The CLIQUE decision problem has as input a graph $G=(V, E)$ and an integer k, and the answer is YES if G has a k-clique (and NO, otherwise).

An independent set in in an undirected graph is a subgraph, wherein no two nodes are connected by an edge. The INDEPENDENT - SET decision problem problem is to determine whether a graph contains an independent set of a specified size.

Theorem 3 HAMPATH, VERTEX-COVER, SUBSET-SUM, CLIQUE , and INDEPENDENT - SET are in NP. (See CS 530 for the proofs)

One important advance on the P versus NP question came in the early 1970s with the work of Stephen Cook and Leonid Levin. They discovered certain problems in NP whose individual complexity is related to that of the entire class. If a polynomial time algorithm exists for any of these problems, all problems in NP would be polynomial time solvable. These problem are called NP-complete.

The first NP-complete problem that we present is called the satisfiability problem. Recall that variables that can take on the values TRUE and FALSE are called Boolean variables. Usually, we represent TRUE by 1 and FALSE by 0 . The Boolean operations AND, OR, and NOT, represented by the symbols \wedge, \vee, \neg and, respectively. We use the overbar as a shorthand for the \neg symbol, so \bar{x} means $\neg x$. A Boolean formula is an expression involving Boolean variables and operations. For example, $\phi=(\bar{x} \vee y) \wedge(x \vee \bar{z})$ is a Boolean formula. A boolean formula is satisfiable is some assignment of 0s and 1s to the variables makes the formula evaluate to 1 . The preceding formula is satisfiable because the assignment $x=0, y=1$, and $z=0$ makes ϕ evaluate to 1 . We say the assignment satisfies ϕ. The satisfiability problem is to test whether a Boolean formula is satisfiable.

Theorem 4 Cook-Levin theorem $S A T \in P$ iff $P=N P$. (See CS 530 for a proof)

Definition 5 Decision problem A is polynomial time mapping reducible ${ }^{1}$, or simply polynomial time reducible, to decision problem B, written $A \leq_{P} B$, if a polynomial time algorithm M exists that takes as input an instance w of A and produces as output an instance $M(w)$ of B such that the A-answer for w is YES if and only if the B-answer for $M(w)$ is YES. The algorithm M is called the polynomial time reduction of A to B.

Theorem 6 For any two decision problems A, B, if $A \leq_{P} B$ and $B \in P$, then $A \in P$.

Theorem 7 For any three decision problems A, B, C, if $A \leq_{P} B$ and $B \leq_{P} C$, then $A \leq_{P} C$.

A literal is a Boolean variable or a negated Boolean variable, as in x and \bar{x}. A clause is several literals connected with Vs. A Boolean formula is in conjunctive normal form, called a cnf-formula, if it comprises several clauses connected with $\wedge \mathrm{s}$. It is a 3cnf-formula if all the clauses have three literals, as in

$$
\left(x_{1} \vee \overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(x_{3} \vee \overline{x_{2}} \vee \overline{x_{6}}\right) \wedge\left(x_{3} \vee \overline{x_{7}} \vee x_{1}\right) \wedge\left(x_{4} \vee x_{5} \vee \overline{x_{6}}\right)
$$

[^0]Let $C N F-S A T$ be the decision problem which takes as input a cnf-formula ϕ and asks for figuring out if the formula is satisfiable, which here means that each clause must contain at least one literal that is assigned 1 . Let $3 S A T$ be the variant of $C N F-S A T$ which takes as input 3 cnf -formulas.

Theorem 8 3SAT is polynomial time reducible CLIQUE.

Definition 9 A decision problem B is $\mathbf{N P}$-complete if it satisfies two conditions:

1. B is in $N P$, and
2. every A in NP is polynomial time reducible to B.

Theorem 10 If B is $N P$-complete and $B \in P$, then $P=N P$.

Theorem 11 If B is $N P$-complete and $B \leq_{P} C$ for C in $N P$, then C is $N P$-complete.

Theorem $12 C N F-S A T$ is NP-complete. $3 S A T$ is $N P$-complete.
This theorem is Theorem 7.27, the Cook-Levin theorem, in a stronger form.

Corollary 13 CLIQUE is NP-complete.

Theorem 14 INDEPENDENT-SET is $N P$-complete.

Theorem 15 VERTEX-COVER is NP-complete.

Theorem 16 HAMPATH is NP-complete.

Theorem $17 S U B S E T-S U M$ is $N P$-complete.

[^0]: ${ }^{1}$ Is is called polynomial time many-one reducibility in some other textbooks.

