
Chapter 21 - Data Structures for Disjoint Sets

Introduction to Algorithms, Third Edition

by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein

The MIT Press © 2009 Citation

Recommend?

21.1 Disjoint-Set Operations

A disjoint-set data structure maintains a collection = {S1, S2, …, Sk} of disjoint dynamic sets. We identify each
set by a representative, which is some member of the set. In some applications, it doesn't matter which member is
used as the representative; we care only that if we ask for the representative of a dynamic set twice without modifying
the set between the requests, we get the same answer both times. Other applications may require a prespecified rule
for choosing the representative, such as choosing the smallest member in the set (assuming, of course, that the
elements can be ordered).

As in the other dynamic-set implementations we have studied, we represent each element of a set by an object.
Letting x denote an object, we wish to support the following operations:

MAKE-SET(x) creates a new set whose only member (and thus representative) is x. Since the sets are
disjoint, we require that x not already be in some other set.

UNION(x, y) unites the dynamic sets that contain x and y, say Sx and Sy, into a new set that is the union
of these two sets. We assume that the two sets are disjoint prior to the operation. The representative of
the resulting set is any member of SX ∪ SY, although many implementations of UNION specifically
choose the representative of either Sx or Sy as the new representative. Since we require the sets in the

collection to be disjoint, conceptually we destroy sets Sx and Sy, removing them from the collection .
In practice, we often absorb the elements of one of the sets into the other set.

FIND-SET(x) returns a pointer to the representative of the (unique) set containing x.

Throughout this chapter, we shall analyze the running times of disjoint-set data structures in terms of two parameters:
n, the number of MAKE-SET operations, and m, the total number of MAKE-SET, UNION, and FIND-SET operations.
Since the sets are disjoint, each UNION operation reduces the number of sets by one. After n - 1 UNION operations,
therefore, only one set remains. The number of UNION operations is thus at most n - 1. Note also that since the
MAKE-SET operations are included in the total number of operations m, we have m ≥ n. We assume that the n
MAKE-SET operations are the first n operations performed.

An Application of Disjoint-Set Data Structures

One of the many applications of disjoint-set data structures arises in determining the connected components of an
undirected graph (see Section B.4). Figure 21.1(a), for example, shows a graph with four connected components.

Introduction to Algorithms, Third Edition - Books24x7 http://library.books24x7.com.ezproxy.gl.iit.edu/assetview...

1 of 3 02/28/2013 10:09 AM

