Analysis with Improved Link (x,y)

First of all, the height of a tree is at most the rank of its root. Second, a tree of rank j contains at least 2^{j} nodes. Proof by induction: both true for $j=0$.

Consider first a Link(x,y) that does not modify ranks (say, rank of x is higher). Then the height of the subtree of y is at most $\operatorname{rank}(y)<\operatorname{rank}(x)$, and the longest path from x to a node in the subtree of y is at most $1+\operatorname{rank}(y) \leq \operatorname{rank}(x)$.
And when the rank goes from $j-1$ to j, the height of the tree increases by at most 1 . Also we union two disjoint trees with at least 2^{j-1} nodes each, for a total of at least 2^{j} nodes.

As the number of nodes in the tree is at most n, we get $2^{j} \leq n$, or $j \leq \log _{2} n$. This makes Find (x) run in $O(\log n)$ time (worst-case).

Path compression doubles the time of Find (x), but saves over the long term.

Worst-case, Find (x) is still $\Theta(\log n)$ each but a sequence of m operations with n elements will take at most $(m+n) \alpha(m, n)$ running time, where $\alpha(m, n)$ grows very very slowly. Analysis to follow.

