CS 538 Combinatorial Optimization Fall Semester, 2020

Maximum Flows and Min-Cost Flows. Version 1.1

1 Network Flows Definitions

A network is a tuple G = (V, E, u, s,t), where V' is a set of vertices, F is a set of directed edges (parallel
edges are allowed), s € V is the source, t € V' is the sink, u is a capacity function: u: £ — Z,.

For a subset of vertices A C V', we denote by 0~ (A) the set of edges with head in A and tail outside
A, and by 67(A) the set of edges with tail in A and head outside A,

Definition 1 A function f: ' — R, is called a flow if the following two conditions are satisfied:

1. conservation of flow at interior vertices: for all vertices v not in {s,t},

> fle)= > fle):

€ (v) et (v)
2. capacity constraints: f < u pointwise: i.e. for all e € F,
fle) <ule) .

Definition 2 The value of a flow f, denoted by |f|, is defined to be

[fl= > fl— > fle).

e€dt(s) e€d—(s)
We say that e is saturated if f(e) = u(e).

Definition 3 An s-t cut (or just cut, when s and ¢ are understood) is a pair (A, B) of disjoint subsets of
V' whose union is V' such that s € A and t € B. The capacity of the cut (A, B), denoted by u(A, B), is

u(A,B)= > ule).

e€dt(A)
If f is a flow, we define the flow across the cut (A,B) to be

fAB)= > fle)= > fle).

e€5t(A) e€s—(A)
Lemma 1.1 For any s —t cut (A, B), f(A,B) = |f|.

Definition 4 Given a flow f on a network G define the residual network G as follows: For every e € E/
with f(e) < u(e), add an edge €’ in Gy with us(e’) = u(e) — f(e); € is the forward edge obtained from e.
For every e € E with f(e) > 0, add an edge € in Gy with us(€) = f(e); € is the back edge obtained from
e. G has the same s and ¢.

Definition 5 Given a network G and flow f on G, an augmenting path is a directed path from s to ¢ in
the residual network G/.

Lemma 1.2 Gwen f" a flow in Gy, consider the function f : E — R, defined by f(e) = f(e) +
f'(e) = f'(€), where ¢’ and @ are the forward and back edge obtained from e. Then fis a flow in G with
=11+ 111

/ Gi‘ve|n f| is‘ a flow in G, consider the function f': Ey — R, defined as follows: if for edge e € E we
have f(e) < f(e), then for the forward edge obtained from e we have f'(e') = fle)— fle), and if for edge
e € B we have f(e) > f(e), then for the back edge obtained from e we have f'(€) = f(e) — f(e), with f’
being zero on the other edges of G¢. Then f' is a flow in Gy with |f'| = |f| — | f]-

The main theorem in Network Flows is the following MaxFlow-MinCut Theorem:

Theorem 1.3 Let G = (V, E,u, s,t) be a network and f be a flow in G. The following three conditions
are equivalent:

1. f is a mazimum flow in G.
2. The residual network Gy contains no augmenting paths.

3. |f| = u(A, B) for some s-t cut (A, B).
2 The Ford-Fulkerson Algorithm

BELLMAN-FORD-FULKERSON(G,s,t)

1. for each edge e € E(G)

2. do f(e)«—20

3. Construct G

4. while there exists a path P from s to ¢ in the residual network G/

5. do ug(P) «— min.epugs(e)

6. for each edge a in P
7. do if a is a forward edge: a = €’ for some e € F
8. fle) «— f(e) + ug(P)
9. else (a =€ for some e € F)
10. £e) «— f(e) —uy(P)
11. Construct Gy

3 More properties
The “How-decomposition theorem” is:

Theorem 3.1 Let f be a flow in G with |f| > 0. Then there exists paths s — t paths Py, ..., P, with
positive integers o, . ..,ap and circuits Qq, ..., Q, with positive integers PBi,...,0,, with 0 < k+r <
{e € E| f(e) > 0}|, such that for all e € E,

flo= > at > B

i€{l,...k} e€P; Je{1,....,r}ne€Q;
= Zu=1 %
and Y
The “uncrossing” of minimum s-t cuts is:

Theorem 3.2 Let G = (V, E,u,s,t) be a network, and let (X,V \ X) and (Y,V\Y) be minimum s —t
cuts in G. Then (X NY,V\(XNY)) and (X UY,V\ (X UY)) are also minimum s —t cuts in G.

4 Applications of the MaxFlow-MinCut Theorem: Menger’s
theorems

Theorem 4.1 Let G be a graph (directed or undirected), let s and t be two vertices, and k € Z,. Then
there are k edge-disjoint s — t paths iff after deleting any k — 1 edges t is still reachable from s.

Theorem 4.2 Let G be a graph (directed or undirected), let s and t be two non-adjacent vertices, and
k € Z,. Then there are k internally-vertex-disjoint s —t paths iff after deleting any k—1 vertices (distinct
from s and t) t is still reachable from s.

Definition 6 An undirected graph with more than k vertices is k-connected if the deletions of any k — 1
vertices leaves a connected graph.

An undirected (multi)-graph k-edge-connected if the deletions of any k& — 1 edges leaves a connected
graph.

Theorem 4.3 An undirected graph G is k-edge-connected iff for each pair s,t € V(G) with s # t there
are k edge-disjoint s — t paths.

An undirected graph G with more than k vertices is k-connected iff for each pair s,t € V(G) with
s # t there are k internally-vertex-disjoint s — t paths.

5 Minimum Cost Network Flows Version

A network is a tuple G = (V, E, u, ¢, s,t), where V is a set of vertices, E is a set of directed edges (parallel
edges are allowed), s € V' is the source, t € V' is the sink, u is a capacity function: u: £ — Z,, and ¢
is a cost function: ¢: E' — R (note: costs can be negative).

Definition 7 The MiNniMUM CosT FLOW problem has as input a network GG and a value b, and the
objective of finding a flow f of value b which minimizes > .cp c(e) f(e).

Definition 8 Given a flow f on a network G define the residual network G as follows: For every e € £/
with f(e) < u(e), add an edge € in Gy with us(e’) = u(e) — f(e) and cs(e') = c(e); € is the forward
edge obtained from e. For every e € E with f(e) > 0, add an edge € in Gy with us(€) = f(e) and
cr(€) = —c(e); € is the back edge obtained from e. G has the same s and t.

Lemma 5.1 Giwen f' a flow in Gy, consider the function f: E — R, defined by f(e) = fle) +
f'(e) = f'(€), where €’ and e are the forward and back edge obtained from e. Then f is a flow in G with
I =1f1+ [f'] and c(f) = c(f) + ¢, (f)-

Given f is a flow in G, consider the function f': E; — R, defined as follows: if for edge e € E we
have f(e) < f(e), then for the forward edge obtained from e we have f'(e') = f(e) — f(e), and if for edge
e € B we have f(e) > f(e), then for the back edge obtained from e we have f'(€) = f(e) — f(e), with f’
being zero on the other edges of Gy. Then f' is a flow in Gy with |f'| = |f| —|f| and cs(f") = c(f) —c(f).
Theorem 5.2 f is a minimum-cost flow of value b iff | f| = b and Gy does not contain any negative-cost
cycle.

Theorem 5.3 If f is a min-cost flow in G of value |f|, P is a min-cost s —t path in Gy, and v <
min.cp ur(e), then the flow f+~fp is a min-cost flow in G of value | f| +y, where fp is the path flow in
Gy shipping one unit of flow from s to t along P.

6 Capacity Scaling Algorithm

First, assume that b (the target value of flow) is the value of maximum flow. Let U be the maximum
capacity of an edge. Second, replace each edge e by at most log U edges with the same cost and capacities
2/, for some integer j. Third, sort the edges in decreasing order of capacities: ej,es,...,€emn; note
m’ < mlogU. Let G* be the sub-network which only has the edges ey, e, ..., €;.

1 f is the zero flow.

2fori=1tom’

3 add edge e; (from z to y) to G}_l to obtain G%

4 Compute P, the min-cost y — x path in G

5 if ¢(P) + c(e;) < 0, route u(e;) units of flow on the cycle (e;, P)

6 Compute P’, the min-cost s — ¢ path in G; and augment at maximum capacity on P’
7 endfor

The algorithm maintains the following invariants:

e if u(e;) = 27, then all the edges in Gy when considering e; in Step 3 have capacities multiple of 27.

e before executing Step 3, f is maximum flow of minimum cost in G*~!.

The invariants ensures that if Step 5 does a negative-cost-cycle rerouting or Step 6 an augmentation,
the amount of routed flow is exactly 2/ and therefore the first invariant is maintained. We used the fact
that the augmentation cannot exceed 2’ since the capacity of the minimum cut canot increase by more
than 2/ when adding e;. This fact also shows we have a maximum flow in G; after executing Step 6. Now:

Lemma 6.1 After executing Step 5, f is a min-cost flow among flows of value | f| in G°.

Thus Theorem 5.3 ensure the second invariant is maintained. Therefore the algorithm correctly
computes a min-cost maximum flow; its running time is O(m/(m’'n)), with the O(m/n)-time Bellman-
Ford algorithm computing the min-cost paths with negative costs. This is O(mlogU(nmlogU)). A third
invariant maintained is that all the computed flows have integer values.

4

