
CS 538 Combinatorial Optimization Fall Semester, 2020

Maximum Flows and Min-Cost Flows. Version 1.1

1 Network Flows Definitions

A network is a tuple G = (V,E, u, s, t), where V is a set of vertices, E is a set of directed edges (parallel
edges are allowed), s ∈ V is the source, t ∈ V is the sink, u is a capacity function: u : E → Z+.

For a subset of vertices A ⊆ V , we denote by δ−(A) the set of edges with head in A and tail outside
A, and by δ+(A) the set of edges with tail in A and head outside A,

Definition 1 A function f : E → R+ is called a flow if the following two conditions are satisfied:

1. conservation of flow at interior vertices: for all vertices v not in {s, t},

∑

e∈δ−(v)

f(e) =
∑

e∈δ+(v)

f(e) ;

2. capacity constraints: f ≤ u pointwise: i.e. for all e ∈ E,

f(e) ≤ u(e) .

Definition 2 The value of a flow f , denoted by |f |, is defined to be

|f | =
∑

e∈δ+(s)

f(e)−
∑

e∈δ−(s)

f(e).

We say that e is saturated if f(e) = u(e).

Definition 3 An s-t cut (or just cut, when s and t are understood) is a pair (A,B) of disjoint subsets of
V whose union is V such that s ∈ A and t ∈ B. The capacity of the cut (A,B), denoted by u(A,B), is

u(A,B) =
∑

e∈δ+(A)

u(e) .

If f is a flow, we define the flow across the cut (A,B) to be

f(A,B) =
∑

e∈δ+(A)

f(e)−
∑

e∈δ−(A)

f(e) .

Lemma 1.1 For any s− t cut (A,B), f(A,B) = |f |.

Definition 4 Given a flow f on a network G define the residual network Gf as follows: For every e ∈ E

with f(e) < u(e), add an edge e′ in Gf with uf(e
′) = u(e)− f(e); e′ is the forward edge obtained from e.

For every e ∈ E with f(e) > 0, add an edge e in Gf with uf(e) = f(e); e is the back edge obtained from
e. Gf has the same s and t.

1

Definition 5 Given a network G and flow f on G, an augmenting path is a directed path from s to t in
the residual network Gf .

Lemma 1.2 Given f ′ a flow in Gf , consider the function f̂ : E → R+ defined by f̂(e) = f(e) +

f ′(e′)− f ′(e), where e′ and e are the forward and back edge obtained from e. Then f̂ is a flow in G with
|f̂ | = |f |+ |f ′|.

Given f̂ is a flow in G, consider the function f ′ : Ef → R+ defined as follows: if for edge e ∈ E we

have f(e) < f̂(e), then for the forward edge obtained from e we have f ′(e′) = f̂(e)− f(e), and if for edge
e ∈ E we have f(e) > f̂(e), then for the back edge obtained from e we have f ′(e) = f(e)− f̂(e), with f ′

being zero on the other edges of Gf . Then f ′ is a flow in Gf with |f ′| = |f̂ | − |f |.

The main theorem in Network Flows is the following MaxFlow-MinCut Theorem:

Theorem 1.3 Let G = (V,E, u, s, t) be a network and f be a flow in G. The following three conditions
are equivalent:

1. f is a maximum flow in G.

2. The residual network Gf contains no augmenting paths.

3. |f | = u(A,B) for some s-t cut (A,B).

2 The Ford-Fulkerson Algorithm

BELLMAN-FORD-FULKERSON(G,s,t)

1. for each edge e ∈ E(G)

2. do f(e)←− 0

3. Construct Gf

4. while there exists a path P from s to t in the residual network Gf

5. do uf(P)←− mine∈Puf(e)

6. for each edge a in P

7. do if a is a forward edge: a = e′ for some e ∈ E

8. f(e)←− f(e) + uf(P)

9. else (a = e for some e ∈ E)

10. f(e)←− f(e)− uf(P)

11. Construct Gf

2

3 More properties

The “flow-decomposition theorem” is:

Theorem 3.1 Let f be a flow in G with |f | ≥ 0. Then there exists paths s − t paths P1, . . . , Pk with
positive integers α1, . . . , αk and circuits Q1, . . . , Qr with positive integers β1, . . . , βr, with 0 ≤ k + r ≤
|{e ∈ E | f(e) > 0}|, such that for all e ∈ E,

f(e) =
∑

i∈{1,...,k}∧e∈Pi

αi +
∑

j∈{1,...,r}∧e∈Qj

βj

and |f | =
∑k

i=1 αi.

The “uncrossing” of minimum s-t cuts is:

Theorem 3.2 Let G = (V,E, u, s, t) be a network, and let (X, V \X) and (Y, V \ Y) be minimum s− t

cuts in G. Then (X ∩ Y, V \ (X ∩ Y)) and (X ∪ Y, V \ (X ∪ Y)) are also minimum s− t cuts in G.

4 Applications of the MaxFlow-MinCut Theorem: Menger’s

theorems

Theorem 4.1 Let G be a graph (directed or undirected), let s and t be two vertices, and k ∈ Z+. Then
there are k edge-disjoint s− t paths iff after deleting any k − 1 edges t is still reachable from s.

Theorem 4.2 Let G be a graph (directed or undirected), let s and t be two non-adjacent vertices, and
k ∈ Z+. Then there are k internally-vertex-disjoint s−t paths iff after deleting any k−1 vertices (distinct
from s and t) t is still reachable from s.

Definition 6 An undirected graph with more than k vertices is k-connected if the deletions of any k−1
vertices leaves a connected graph.

An undirected (multi)-graph k-edge-connected if the deletions of any k − 1 edges leaves a connected
graph.

Theorem 4.3 An undirected graph G is k-edge-connected iff for each pair s, t ∈ V (G) with s 6= t there
are k edge-disjoint s− t paths.

An undirected graph G with more than k vertices is k-connected iff for each pair s, t ∈ V (G) with
s 6= t there are k internally-vertex-disjoint s− t paths.

5 Minimum Cost Network Flows Version

A network is a tuple G = (V,E, u, c, s, t), where V is a set of vertices, E is a set of directed edges (parallel
edges are allowed), s ∈ V is the source, t ∈ V is the sink, u is a capacity function: u : E → Z+, and c

is a cost function: c : E → R (note: costs can be negative).

Definition 7 The Minimum Cost Flow problem has as input a network G and a value b, and the
objective of finding a flow f of value b which minimizes

∑
e∈E c(e)f(e).

3

Definition 8 Given a flow f on a network G define the residual network Gf as follows: For every e ∈ E

with f(e) < u(e), add an edge e′ in Gf with uf(e
′) = u(e) − f(e) and cf(e

′) = c(e); e′ is the forward
edge obtained from e. For every e ∈ E with f(e) > 0, add an edge e in Gf with uf(e) = f(e) and
cf(e) = −c(e); e is the back edge obtained from e. Gf has the same s and t.

Lemma 5.1 Given f ′ a flow in Gf , consider the function f̂ : E → R+ defined by f̂(e) = f(e) +

f ′(e′)− f ′(e), where e′ and e are the forward and back edge obtained from e. Then f̂ is a flow in G with
|f̂ | = |f |+ |f ′| and c(f̂) = c(f) + cf(f

′).

Given f̂ is a flow in G, consider the function f ′ : Ef → R+ defined as follows: if for edge e ∈ E we

have f(e) < f̂(e), then for the forward edge obtained from e we have f ′(e′) = f̂(e)− f(e), and if for edge
e ∈ E we have f(e) > f̂(e), then for the back edge obtained from e we have f ′(e) = f(e)− f̂(e), with f ′

being zero on the other edges of Gf . Then f ′ is a flow in Gf with |f ′| = |f̂ |− |f | and cf(f
′) = c(f̂)− c(f).

Theorem 5.2 f is a minimum-cost flow of value b iff |f | = b and Gf does not contain any negative-cost
cycle.

Theorem 5.3 If f is a min-cost flow in G of value |f |, P is a min-cost s − t path in Gf , and γ ≤
mine∈P uf(e), then the flow f + γfP is a min-cost flow in G of value |f |+ γ, where fP is the path flow in
Gf shipping one unit of flow from s to t along P .

6 Capacity Scaling Algorithm

First, assume that b (the target value of flow) is the value of maximum flow. Let U be the maximum
capacity of an edge. Second, replace each edge e by at most logU edges with the same cost and capacities
2j, for some integer j. Third, sort the edges in decreasing order of capacities: e1, e2, . . . , em′ ; note
m′ ≤ m logU . Let Gi be the sub-network which only has the edges e1, e2, . . . , ei.

1 f is the zero flow.
2 for i = 1 to m’
3 add edge ei (from x to y) to Gi−1

f to obtain Gi
f

4 Compute P , the min-cost y − x path in Gi
f

5 if c(P) + c(ei) < 0, route u(ei) units of flow on the cycle (ei, P)
6 Compute P ′, the min-cost s− t path in Gi

f and augment at maximum capacity on P ′

7 endfor

The algorithm maintains the following invariants:

• if u(ei) = 2j , then all the edges in Gf when considering ei in Step 3 have capacities multiple of 2j.

• before executing Step 3, f is maximum flow of minimum cost in Gi−1.

The invariants ensures that if Step 5 does a negative-cost-cycle rerouting or Step 6 an augmentation,
the amount of routed flow is exactly 2j and therefore the first invariant is maintained. We used the fact
that the augmentation cannot exceed 2j since the capacity of the minimum cut canot increase by more
than 2j when adding ei. This fact also shows we have a maximum flow in Gi after executing Step 6. Now:

Lemma 6.1 After executing Step 5, f is a min-cost flow among flows of value |f | in Gi.

Thus Theorem 5.3 ensure the second invariant is maintained. Therefore the algorithm correctly
computes a min-cost maximum flow; its running time is O(m′(m′n)), with the O(m′n)-time Bellman-
Ford algorithm computing the min-cost paths with negative costs. This is O(m logU(nm logU)). A third
invariant maintained is that all the computed flows have integer values.

4

