
1 Linear Programming Duality (based on Karloff’s book).

Here is how we build the dual in general. For eachconstraint in the primal, there is avariable in the
dual. For eachvariable in the primal, there is aconstraint in the dual.

PRIMAL DUAL
row i

∑
j aijxj = bi yi ≶ 0

row i
∑

j aijxj ≥ bi yi ≥ 0

var j xj ≶ 0
∑m

i=1
yiaij = cj

var j xj ≥ 0
∑

i yiaij ≤ cj
min cTx max yT b

To get the dual, a maximization problem, first turn any≤ constraints in the primal into≥’s by
negating both sides. Put the coefficients of the objective function on the right-hand side of the dual.
Read down the primal’s columns and use the entries in one column to write down one dual constraint.
A dual variableyi is sign-constrained (yi ≥ 0) if and only if the corresponding primal constraint is an
inequality; a dual constraint is an inequality if and only ifthe corresponding primal variable is sign-
constrained (xj ≥ 0). Remember, inequality in one problem corresponds to inequality in the other.
Equality in one corresponds to≶ in the other.
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Theorem 1.1 The dual of the dual is the primal.

From our construction of the dual, a reasonable conjecture would be that ifw is feasible in the
primal andu is feasible in the dual, thencTw ≥ uT b. It is true. (IfA is m × n, c andw aren-vectors
andu andb arem-vectors.)

Theorem 1.2 If w, u is a primal/dual feasible pair, cTw ≥ uT b.

Theorem 1.3 If a linear program has an optimal solution, so does its dual, and their optimal costs are
identical.

A lot of mathematics (e.g., combinatorial optimization, mathematical economics) is based on this
theorem!

The dual of an LP in Standard form is an LP in pseudo-packing form, as shown below.

PRIMAL DUAL
min cTx max bT y

s.t. Ax = b s.t. ATy ≤ c

x ≥ 0
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Corollary 1.4 If we run Simplex on LPS, at termination (B−1)T cB is dual optimal (if an optimal point
exists).

If the primal is unbounded, the dual must infeasible. Otherwise, how couldcTw ≥ uT b, if cTw can
be made arbitrarily small? Analogously, if the dual is unbounded, the primal is infeasible.

Corollary 1.5 Exactly one of these three cases occurs:

1. Primal and dual are both infeasible.

2. One is unbounded and the other is infeasible.

3. Both have optimal points.

Theorem 1.6 (Complementary Slackness)
Let P be a linear program in general form:

P : min cTx
s.t. Aix = bi, 1 ≤ i ≤ h

Aix ≥ bi, h+ 1 ≤ i ≤ m

xj ≥ 0, 1 ≤ j ≤ l

xj ≶ 0, l + 1 ≤ j ≤ n.

Let its dual be D : max yT b
s.t. yi ≶ 0, 1 ≤ i ≤ h

yi ≥ 0, h+ 1 ≤ i ≤ m

AT
j y ≤ cj, 1 ≤ j ≤ l

AT
j y = cj, l + 1 ≤ j ≤ n.

Let w be primal feasible and let u be dual feasible. Then w is primal optimal and u is dual optimal if
and only if

(Aiw − bi)ui = 0 for i = 1, 2, ..., m

and
wj(cj −AT

j u) = 0 for j = 1, 2, ..., n.

(If a dual variable is nonzero, the corresponding primal constraint must be tight. If a primal variable
is nonzero, the corresponding dual constraint must be tight.)

Farkas’ Lemma is a remarkably simple characterization of those linear systems that have solutions.
Via the Duality Theorem, its proof is trivial.

Theorem 1.7 Ax ≤ b has a solution if and only if there is no nonnegative vector y satisfying ATy = 0
and bT y < 0.

A similar result, proven in the same way, is also known as Farkas’ Lemma:

Theorem 1.8 Ax = b, x ≥ 0 has a solution if and only if there is no vector y ≶ 0 satisfying ATy ≤ 0
and bT y > 0.
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