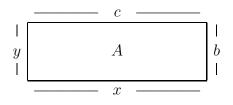
1 Linear Programming Duality (based on Karloff's book).

Here is how we build the dual in general. For each *constraint* in the primal, there is a *variable* in the dual. For each *variable* in the primal, there is a *constraint* in the dual.

	PRIMAL	DUAL		
row i	$\sum_{j} a_{ij} x_j = b_i$	y_i	\leq	0
row i	$\sum_{j=1}^{r} a_{ij} x_j \ge b_i$	y_i	\geq	0
var j	$x_j \leqslant 0$	$\sum_{i=1}^{m} y_i a_{ij}$	=	c_j
	$x_j \ge 0$	$\sum_{i} y_{i} a_{ij}$	\leq	c_j
min	$c^T x$	max		$y^T b$

To get the dual, a maximization problem, first turn any \leq constraints in the primal into \geq 's by negating both sides. Put the coefficients of the objective function on the right-hand side of the dual. Read down the primal's columns and use the entries in one column to write down one dual constraint. A dual variable y_i is sign-constrained ($y_i \geq 0$) if and only if the corresponding primal constraint is an inequality; a dual constraint is an inequality if and only if the corresponding primal variable is sign-constrained ($x_j \geq 0$). Remember, inequality in one problem corresponds to inequality in the other. Equality in one corresponds to \leq in the other.



Theorem 1.1 *The dual of the dual is the primal.*

From our construction of the dual, a reasonable conjecture would be that if w is feasible in the primal and u is feasible in the dual, then $c^T w \ge u^T b$. It is true. (If A is $m \times n$, c and w are n-vectors and u and b are m-vectors.)

Theorem 1.2 If w, u is a primal/dual feasible pair, $c^T w \ge u^T b$.

Theorem 1.3 If a linear program has an optimal solution, so does its dual, and their optimal costs are identical.

A lot of mathematics (e.g., combinatorial optimization, mathematical economics) is based on this theorem!

The dual of an LP in Standard form is an LP in pseudo-packing form, as shown below.

PRIMAL DUAL
min
$$c^T x$$
 max $b^T y$
s.t. $Ax = b$ s.t. $A^T y \le c$
 $x \ge 0$

Corollary 1.4 If we run Simplex on LPS, at termination $(B^{-1})^T c_B$ is dual optimal (if an optimal point exists).

If the primal is unbounded, the dual must infeasible. Otherwise, how could $c^T w \ge u^T b$, if $c^T w$ can be made arbitrarily small? Analogously, if the dual is unbounded, the primal is infeasible.

Corollary 1.5 *Exactly one of these three cases occurs:*

- 1. Primal and dual are both infeasible.
- 2. One is unbounded and the other is infeasible.
- 3. Both have optimal points.

Theorem 1.6 (Complementary Slackness)

Let P be a linear program in general form:

$$P: \quad \min c^T x$$

$$s.t. \ A^i x = b_i, \quad 1 \le i \le h$$

$$A^i x \ge b_i, \quad h+1 \le i \le m$$

$$x_j \ge 0, \quad 1 \le j \le l$$

$$x_j \leqslant 0, \quad l+1 \le j \le n.$$

Let its dual be $D: \quad \max y^T b$

$$s.t. \ y_i \leqslant 0, \quad 1 \le i \le h$$

$$y_i \ge 0, \quad h+1 \le i \le m$$

$$A_j^T y \le c_j, \quad 1 \le j \le l$$

$$A_i^T y = c_i, \quad l+1 \le j \le n.$$

Let w be primal feasible and let u be dual feasible. Then w is primal optimal and u is dual optimal if and only if

$$(A^{i}w - b_{i})u_{i} = 0$$
 for $i = 1, 2, ..., m$

and

$$w_i(c_i - A_i^T u) = 0$$
 for $j = 1, 2, ..., n$.

(If a dual variable is nonzero, the corresponding primal constraint must be tight. If a primal variable is nonzero, the corresponding dual constraint must be tight.)

Farkas' Lemma is a remarkably simple characterization of those linear systems that have solutions. Via the Duality Theorem, its proof is trivial.

Theorem 1.7 $Ax \leq b$ has a solution if and only if there is no nonnegative vector y satisfying $A^T y = 0$ and $b^T y < 0$.

A similar result, proven in the same way, is also known as Farkas' Lemma:

Theorem 1.8 Ax = b, $x \ge 0$ has a solution if and only if there is no vector $y \le 0$ satisfying $A^T y \le 0$ and $b^T y > 0$.