
1 Linear Programming Definitions (based on Karloff’s book).

A linear program in general form is the problem of minimizing a linear function subject to a finite

number of equality and inequality constraints. Where x, c ∈ IRn, A is a k × n matrix, b ∈ IRk,

A′ is l × n, and b′ ∈ IRl, the following is a general linear program with n variables, k equality

constraints, and l inequality constraints. The redundant notation xj ≶ 0 means that variable xj is

not sign-constrained. Either k or l can be 0.

min cTx
subject to Ax = b

A′x ≥ b′

x1 ≥ 0 x2 ≥ 0 · · · xr ≥ 0 xr+1 ≶ 0 · · · xn ≶ 0
Let us look at three special classes of linear programs.

Standard form: min cTx,
s.t. Ax = b

x ≥ 0

in which every variable is sign-constrained and only equality con-

straints are allowed, and

Canonical form: min cTx,
s.t. Ax ≥ b

x ≥ 0

a form which allows only inequality constraints and in which all

variables are sign-constrained. If all entries in the arrays c, A, and b are non-negative we have a

covering linear program.

Pseudo-packing form : max cTx,
s.t. Ax ≤ b

a maximization version in which only inequality constraints

are allowed. If in addition every variable is sign-constrained (this can be written as −xi ≤ 0), and

all entries in the arrays c, A, and b are non-negative we have a packing linear program.

All four forms are equivalent in that any one can easily and quickly be converted to any other.

Clearly, a linear program in standard , canonical form , or pseudo-packing form is already in general

form, so to prove equivalence it suffices to show that general-form linear programs can be converted

to standard , canonical, and pseudo-packing forms.

2 Linear Algebra and Geometry Refresher

Conventions. In this class, all vectors will be column vectors, unless explicitly defined to be row

vectors. Sometimes v1, v2, ..., vn will denote the components of n-vector v, sometimes n distinct

vectors. Whenever we mean the latter we will say so explicitly. The jth column of an array A (as a

column vector) will be denoted Aj; its ith row, as a row vector, will be denoted Ai.

A vector space or linear space S (in IRn) is a nonempty subset of IRn closed under vector ad-

dition and scalar multiplication. Vectors v1, . . . , vr are linearly independent if and only if whenever
∑

civi = 0 and ci ∈ IR, then ci = 0 for all i. Vectors that are not linearly independent are linearly

dependent. A vector v is a linear combination of vectors v1, . . . , vr if there exists ci ∈ IR such that
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v =
∑r

i=1
civi. Alternatively, a set of vectors is linearly independent if none is a linear combina-

tion of the others. The dimension dim(S) of a linear space S is the maximum number of linearly

independent vectors in S.

An affine space (in IRn) is the translate of a linear space. Formally, A ⊆ IRn is an affine space

if and only if A = {t + y | y ∈ S} for a fixed n-vector t and linear space S. The dimension of A
is defined to be dim(S). By extension, if B is an arbitrary subset of IRn, dim(B) is defined to be

the smallest dimension of any affine space containing B. For example, if v1, v2, . . . , vk are arbitrary

n-vectors, because

{v1, . . . , vk} ⊆ {v1 +
k

∑

i=2

αi(vi − v1) | αi ∈ IR},

the dimension of {v1, . . . , vk} is at most k − 1.

If A is an m× n matrix, we define

column space(A) = {Ax | x ∈ IRn},
and

rank(A) = dim(column space(A)).

We say that A has full rank if rank(A) is its smaller dimension. Nullspace(A) is the vector space

{x | Ax = 0} and the nullity of A is the dimension of nullspace(A).

The first several theorems are standard in the theory of linear algebra.

Theorem 2.1 Rank(A) is simultaneously the maximum number of linearly independent rows in A
and the maximum number of linearly independent columns in A.

Theorem 2.2 Nullity(A)+ rank(A) = n, if A is m× n.

Let A be an m × n matrix and suppose At = b. The set of all solutions to the linear system

Ax = b is

{x | Ax = b} = {t + y | Ay = 0} = {t+ y | y ∈ nullspace (A)};
all solutions can be found by adding one particular solution to the nullspace. Using Gaussian Elim-

ination, we can solve a linear system, transform a matrix to upper echelon form, compute its rank

and determinant, find its inverse if it’s nonsingular, and so on. Gaussian Elimination runs in O(n3)
steps on our exact-arithmetic model. (On a RAM, Gaussian Elimination can be implemented so as

to run in polynomial time).

The length of a vector x is ‖x‖ =
√
xTx.

Definition. A hyperplane in IRn is

H = {x | a1x1 + · · ·+ anxn = b},
where not all ai = 0. (It is easy to see that dim(H) = n− 1, since if, say, a1 6= 0, H can be written

as [b/a1 0 0 · · · 0]T plus the nullspace of 1 × n matrix [a1 a2 · · · an].) A halfspace is the set

{x | a1x1 + · · ·+ anxn ≥ b} where not all ai = 0.

We say a set T ⊆ IRn is bounded if there is a real r such that ‖x‖ ≤ r for all x ∈ T .
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Definition. A polyhedron is the intersection of finitely many halfspaces. A bounded nonempty

polyhedron is called a polytope.

Example. The set {x | Ax ≤ b, } is the intersection of finitely many halfspaces, as is {x | Ax =
b, x ≥ 0}. If they are nonempty and bounded, they’re polytopes.

We say a sequence of equality or inequality constraints is linearly independent if the sequence

of coefficient vectors is linearly independent. The right-hand sides and whether the constraints are

equalities or inequalities are ignored.

Definition. If x, y, p ∈ IRn and p = λx + (1 − λ)y, 0 ≤ λ ≤ 1, then p is the convex combination

of x and y. More generally, p is the convex combination of points x1, x2, . . . , xr if p =
∑r

i=1
λixi,

λi ≥ 0, and
∑r

i=1
λi = 1. Point p is the strict convex combination of points x1, x2, . . . , xr if

p =
∑r

i=1
λixi, λi > 0, and

∑r

i=1
λi = 1.

Definition. S ⊆ IRn is convex if whenever x, y ∈ S, λx +
(1− λ)y ∈ S for all λ ∈ [0, 1]. That is, the line segment between x and y lies in S.

Definition. Given a set of vectors S, the convex hull of S is the set of all convex combinations of

vectors of S.

It is easy to see that (a) the intersection of arbitrarily many convex sets is convex, (b) a convex

combination of points in a convex set is itself in the set, and (c) halfspaces are convex sets.

3 Vertices

Definition. If P is a polyhedron, v ∈ P is an extreme point or vertex if v cannot be written as the

strict convex combination of two distinct points x, y ∈ P .

If v is extreme, one can’t “slide” along any line through v and stay within P . Not even a 1-

dimensional ball around v lies entirely in P .

A constraint is tight if it is satisfied with equality.

Lemma 3.1 Suppose P = {x ∈ IRn|Ax ≤ b} is a polyhedron. Then v is an extreme point of P if

and only if there are n linearly independent constraints among the constraints Ax ≤ b that are tight

at v.

Since an equality is a pair of inequalities, the same result holds even if P is defined by both

inequalities and equalities.

Say a minimization problem is unbounded if for each real B, there is a feasible point of cost less

than B. We define unbounded maximization problems similarly.

Theorem 3.2 In a pseudo-packing LP with A of rank n, suppose that p ∈ F , where F = {x ∈
IRn|Ax ≤ b} is the set of feasible solutions. Then either the pseudo-packing LP, instance is un-

bounded or there is a vertex v of F satisfying cTv ≥ cTp.

Corollary 3.3 If in a pseudo-packing LP with A of rank n, F := {x ∈ IRn|Ax ≤ b} satisfies F 6= ∅,

and there is a B with cTx ≤ B for all x ∈ F , then there is an optimal vertex. Provided that the cost

is bounded, linear programming is a finite problem!
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Note that this proof yields a polynomial-time algorithm to find a vertex v such that cTv ≥ cTp.

Theorem 3.4 If P = {x ∈ IRn|Ax ≤ b} is a polytope, with A of rank n, then every x ∈ P can be

written as a convex combination of at most n+ 1 vertices.

In other words, a polytope is the convex hull of its vertices. There is a reverse to this statement.

Theorem 3.5 Let S be a finite set of vectors. Then its convex hull is a polytope.

Theorem 3.6 Let P = {x ∈ IRn|Ax ≤ b} be a polytope, with A of rank n, and v be a vertex of

P . Then there exists c ∈ IRn such that the linear program max cTx, s.t. Ax ≤ b has v as its unique

optimum solution.

4 Standard Form LPs: Basic Solutions

Definition. If A is an m × n matrix of rank m, any m linearly independent columns are a basis.

(They form a basis of A’s column space, IRm). Sometimes we will use the columns as the basis,

sometimes just their indices.

Definition. Consider the linear program min cTx
Ax = b
x ≥ 0

where A is of rank m and is m× n. If columns

j1 < j2 < · · · < jm are a basis, the corresponding basic solution x is defined as follows and

ignores c. Let B be the nonsingular matrix consisting of columns j1, j2, . . . , jm of A. Any variable

xl where l /∈ {j1, j2, . . . , jm} is set to 0 and is called nonbasic. For k = 1, . . . , m, xjk is set to

the kth component of B−1b and is known as basic; the basic variables may or may not be 0. (The

basic solution x is the unique vector satisfying Ax = b subject to the condition that xl = 0 for

l /∈ {j1, . . . , jm}.) If x satisfies the sign constraints x ≥ 0, x is a basic feasible solution or bfs.

BASIC SOLUTIONS ARE VERY IMPORTANT! - see Theorem 4.1 below.

If m× n matrix A has rank m, then Ax = b
x ≥ 0

always has a basic solution. If the feasible region

is nonempty, we will see that it must have a bfs as well.

Notation. Let us use LPS to denote

“min cTx,
s.t. Ax = b

x ≥ 0

where A is an m× n matrix of rank m.”

We use F to denote the feasible set {x | Ax = b, x ≥ 0}. Throughout, i will generally denote a

row index, running from 1 to m, and j will generally denote a column index, running from 1 to n.

Theorem 4.1 In LPS, suppose that w ∈ IRn. Then w is a vertex of the feasible set F if and only if

w is a basic feasible solution of the LPS instance.
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Corollary 4.2 There are only finitely many vertices.

Proof. Each is a bfs, which is determined by an m-element subset of the columns. The number of

bfs’s is therefore at most
(

n

m

)

.

Definition. A bfs is degenerate if it has more than n−m zeroes.

Theorem 4.3 If two different bases correspond to a single bfs v, then v is degenerate.

(The converse is false.)

Theorem 4.4 In LPS, suppose that p ∈ F . Then either the LPS instance is unbounded or there is a

vertex v of F satisfying cTv ≤ cTp.

Corollary 4.5 If in LPS F 6= ∅ and cTx ≥ B for all x ∈ F , then there is an optimal vertex.

Provided that the cost is bounded below, linear programming is a finite problem!

5 Definitions for the ellipsoid algorithm

A set of n-vectors u1, u2, ..., um is orthonormal if each has unit length and distinct vectors have 0 dot

product. Alternatively, u1, u2, ..., um are orthonormal if and only if uT
k ul = 0 if k 6= l, and uT

k uk = 1
for all k. A real square matrix U is ıorthogonal if UUT = I , i.e., its rows (and hence columns) are

orthonormal.

A complex number λ is an eigenvalue of A if Ax = λx for some nonzero complex vector x. The

vector x is known as the eigenvector corresponding to λ.

Theorem 5.1 (The Spectral Theorem)

If A is a real symmetric matrix, all of A’s eigenvalues are real. Furthermore, if A’s eigenvalues are

λ1, λ2, ..., λn, then

A = UΛU−1,

where

Λ =











λ1 0 · · · 0

0 λ2

...
...

. . . 0
0 · · · 0 λn











and U is an orthogonal matrix whose ith column is the eigenvector of A corresponding to λi, nor-

malized to have length one.

If A is a real symmetric matrix, we say A is positive definite if

xTAx > 0

for all nonzero, real n-vectors x.
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Theorem 5.2 Let A be real symmetric. The following are equivalent.

(a) A is positive definite.

(b) All eigenvalues of A are positive.

(c) A = QQT for a nonsingular n× n real matrix Q.

The size of a m × n matrix A with rational entries Aij = pij/qij , with p′s and q′s integers,

is defined as size(A) = mn logmn +
∑

i

∑

j⌈lg(|pij| + 1)⌉ + ⌈lg(|qij| + 1)⌉. The size of an LP

program is obtained by adding the sizes of A, b, and c.
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