
Matching Definitions, Theorems, Algorithms - version 1.4

Given a set A, a subset B ⊆ A, and a property P , we say that B is maximal with property B
iff B has property P , while for all elements e ∈ A \B, B ∪ {e} does not have property P .

A simple graph can have at most one edge between two given vertices. Multigraphs can
have several distinct edges between the same two vertices; multigraphs are usually not relevant
when discussing matching. For a graph/multigraph, we consistently use n = |V | and m = |E|.

Given a (multi)graph G = (V.E) and a set of vertices A ⊆ V , the subgraph of G induced

by A has vertex set A and edge set all the edges of E with both endpoints in A. We also use
G \ A to denote the graph subgraph of G induced by V \ A.

Given an undirected graph G = (V,E), a matching is a subset M ⊆ E such that no two
edges in M share a vertex.

Definition 1 Given a matching M in G = (V,E), an edge e ∈ E is matched if e ∈M , and free
if e ∈ E \M . A vertex v is matched if v has an incident matched edge, and free otherwise.

Definition 2 A perfect matching is a matching in which every vertex is matched.

Definition 3 Given a matching M in G = (V,E), a path (cycle) in G is an alternating path
(cycle) with respect to the matching M if it is simple (has no repeated vertices) and consists of
alternating matched and free edges. An alternating path is an augmenting path (with respect
to M) if its endpoints are free.

Theorem 1 Given a graph G = (V,E) and a matching M ⊆ E, M is a maximum matching
iff there is no augmenting path in G with respect to M .

Definition 4 A graph G = (V,E) is bipartite iff V can be partitioned in A and B such that
every edge of E has one endpoint in A and one endpoint in B.

Fact 2 A graph is bipartite iff it does not have any odd cycle.

Definition 5 If G = (V,E) is an undirected graph, a vertex cover of G is a subset of V where
every edge of G is adjacent to one node in this subset. The minimum vertex cover problem asks
for the size of the smallest vertex cover. An edge cover of G is a subset subset of E where
every vertex of G is adjacent to one edge in this subset. The minimum edge cover problem asks
for the size of the smallest edge cover.

Fact 3 For any graph G = (V,E), any M ⊆ E matching in G and Q vertex cover in G,
|M | ≤ |Q|.

Theorem 4 In a bipartite graph, the size of a maximum matching equals the size of the mini-
mum vertex cover.

1

Theorem 5 In a bipartite graph G = (V,E), with V partitioned into A and B, there is a
matching with every vertex of A matched if and only if for all X ⊆ A, |Γ(X)| ≥ |X|, where
Γ(X) = {v ∈ B | ∃x ∈ X , xv ∈ E}.

Maximum Matching Algorithm (Edmonds) (G = (V,E))
1 M ← ∅
2 while M has augmenting path P do

3 M ← M ⊕ P

The algorithms for computing a maximum matching uses S-Trees to search for augmenting
paths in a graph G with respect to matching M .

We can prove that the algorithm below either finds an augmenting path or finds a flower F ,
composed of an odd cycle B of G, called the blossom of F , with exactly one vertex v free with
respect to E(G[B]) ∩M (v is called the base of the blossom), and either v is free with respect
to M or there is an alternating path called the stem of F , from x to an free vertex u (the root
of the flower).

S-Trees construction (G = (V,E),M)
1 Q← {v ∈ V | v free}
2 Each vertex x in Q is a root of a S-Tree (p(x)← NULL), and is labeled even.
3 while Q 6= ∅ do
4 Pick x ∈ Q
5 if all edges incident to x are investigated then

4 Q← Q \ {x}
5 else

6 let xy be an edge incident to x; mark it investigated
7 if y unlabeled // y must be matched!
8 label y odd; p(y)← x;
9 let z be such that yz ∈M ; label z even; p(z)← y; Q← Q ∪ {z}
10 else if y even

11 follow p-pointers from x and y to get
augmenting path (different roots) or odd cycle (same root)

Upon discovering a flower F with blossom B, Edmonds’ algorithm constructs a new graph
G′ = (V ′, E ′) and a matching M ′ in G′ as follows: V ′ = (V \B)∪ {b}, where b is a new vertex,
for every edge xy ∈ E with {x, y} ∩ B = ∅, add xy to E ′, and if x ∈ B and y 6∈ B, add by to
E ′. Put an edge in M ′ if it comes from an edge in M , and then remove free parallel edges.

Claim 6 G has an augmenting path with respect to M if and only if G′ has an augmenting
path with respect to M ′. Moreover, given an augmenting path P ′ for M ′ in G′, we can obtain
an augmenting path P for M in G in O(m+ n).

2

Proof sketch of ”only if”. Assume there is augmenting path P for G and M , from free
vertices x to y. If P does not interesect B, then it is augmenting path for M ′ in G′. Else, let
Px be the directed path from x to some vertex of B, and Py the directed path from y to some
vertex of B; one of these two paths may consist of only one vertex, if the flower has no stem. If
the flower has no stem, the path from Px and Py that has more than one vertex is augmenting
for M in G′; so we assume from now on the stem is non-empty.

Note that Px and Py are vertex disjoint, Px and Py each end in a vertex of B using a free
edge, and they do not end at the same vertex of B since we could not combine them in an
augmenting path.

Call a matched edge e that belongs to both Px and the stem cool iff Px traverses e downward
(on the stem, same way as the path from the root of the flower to the base of the blossom),
and the subpath of Px before e does not intersect the subpath of the stem from e to the base
of blossom (this subpath can have only one vertex, the base of the blosom). The path Py may
have its own cool edges, defined as above with Py instead of Px.

In a first case, there are no cool edges. One of x, y is not u, the root of the flower; say x 6= u.
If Px does not touches any vertex in the stem of the flower, then an augmenting path for G′ is
given by Px followed by the stem upwards. If Px touches the stem, it must use the matched
edge in the stem incident to the vertices is touches. As no cool edge exists, then with e being
the first edge on Px and the stem, we get an augmenting path for M ′ in G′ by following Px up
to e and then going up the stem.

In a second case, there exists cool edges, and consider e to be the one closest to the blossom,
and switch x with y if needed to have e on Px (we don’t need x 6= u anymore). If Py does not
touch the stem under e, we get an augmenting path for M ′ in G′ by combining the portion on
Px up to e, then the stem down to b (the supervertex), then Py to y. If Py touches the stem
under e, than its first matched edge on this part of the stem, say ey, must go upwards on the
stem, or else ey would be cool and lower than e. We get an augmenting path for M ′ in G′ by
combining the portion on Px up to e, then the stem down to ey, then Py to y. This finishes the
sketch.

Find-Augmenting-Path (G = (V,E),M). Returns path P or ”No augmenting path”
1 Run S-Trees construction (G,M)
2 if one edge xy is found with both endpoints even then

3 if x and y in different trees then
4 Return P , the path obtained from x, y using p-pointers
5 else

6 Identify the blossom B, construct G′ and M ′

6 if Find-Augmenting-Path (G′,M ′) returns P ′ then

7 Construct P from P ′; Return P
9 Return ”No augmenting path”

3

It is clear that G′ can be constructed from G in O(|E| + |V |). Then the running time for
Find-Augmenting-Path obeys the recurrence T (n) ≥ (n+m) + T (n− 2), with the solution
T (n) = O(nm). Clever book-keeping can reduce this to O(m), for a Maximum Matching
algorithm with complexity O(mn). Best known is O(m

√
n), but I can present this bound only

for bipartite graphs.

Edmonds-Gallai decomposition

Theorem 7 In polynomial time, using Edmonds’ Maximum Matching Algorithm, we obtain a
set A ⊆ V such that G \ A has connected components B1, B2, . . . , Bk, D1, D2, . . .Dj such that:

• for each 1 ≤ i ≤ j Di has a perfect matching,

• for each 1 ≤ i ≤ k and each vertex v ∈ Bi, Bi \ {v} has a perfect matching.

• any maximum matching of G matches all the vertices of A to vertices in distinct Bi’s;
moreover, the matchings above can be quickly found and extended to a maximum matching
M of G.

Note then that

|M | = |A|+
k∑

i=1

(|Bi| − 1)/2 +
j∑

i=1

|Di|/2 (1)

4

