
CS 116 – Week 2 – Page 1

CS 116

Week 2: Outline

Reading:

1. Dale, Chapter 7
2. Dale, Lab 2

Objectives:

1. Introduce Inheritance
2. Introduce Polymorphism
3. Introduce Scope

Concepts:

1. Discuss inheritance and its relation to object-oriented design
2. Discuss scope of access
3. Familiarize students with class hierarchies

CS 116 – Week 2 – Page 2

CS 116

Week 2: Lecture Outline

1. Discuss inheritance and its relation to object-oriented design
• Introduce basics of inheritance
• Show examples
• Inheritance in the OOD process

2. Familiarize students with class hierarchies

• Introduce basics of class hierarchies

3. Discuss scope of access
• Discuss scope’s purpose in OOD
• Scope rules
• Class scope
• Block scope

4. Introduce polymorphism
• Discuss polymorphism’s basics
• Polymorphism examples

5. Lab 2 overview

CS 116 – Week 2 – Page 3

CS 116

Week 2: Lab Outline

Objective:

1. Review coding, compilation and execution of simple programs
2. Be able to create a class
3. Be able to apply and use inheritance.

Student Activities:

1. Create a Program that creates a payroll system using Polymorphism
 Let us use abstract classes, abstract methods and polymorphism to perform payroll
calculations based on the type of employee. We use an abstract super class Employee. The
subclass of Employee are Boss - paid a fixed weekly salary regardless of the number of hours
worked, Commission Worker - paid a flat base salary plus a percentage of sales, PieceWorker -
paid by the number of items produced and Hourly Worker - paid by the hour and receives
overtime pay. Each subclass of Employee has been declared final, because we do not intend to
inherit from them again.
 An earnings method call certainly applies to all employees. But the way each person’s
earnings are calculated depends on the class of the employee, and these classes are all derived
from the super class Employee. So earnings is declared abstract in super class Employee and
appropriate implementations of earnings are provided for each of the subclass. Then, to calculate
any employee’s object and invokes the earnings method. In a real payroll system, the various
Employee objects might be referenced by individual elements in an array of Employee
references. The program would simply walk through the array one element at a time, using the
Employee references to invoke the earnings method of each object. A Test.java is given and the
final result . Good luck!

TEST.JAVA
// Test.java
// Driver for Employee hierarchy
// Java core packages
import java.text.DecimalFormat;
// Java extension packages
import javax.swing.JOptionPane;

public class Test {
 // test Employee hierarchy
 public static void main(String args[])
 {
 Employee employee; // superclass reference
 String output = "";

 Boss boss = new Boss("John", "Smith", 800.0);

 CommissionWorker commissionWorker =

CS 116 – Week 2 – Page 4

 new CommissionWorker(
 "Sue", "Jones", 400.0, 3.0, 150);

 PieceWorker pieceWorker =
 new PieceWorker("Bob", "Lewis", 2.5, 200);

 HourlyWorker hourlyWorker =
 new HourlyWorker("Karen", "Price", 13.75, 40);

 DecimalFormat precision2 = new DecimalFormat("0.00");

 // Employee reference to a Boss
 employee = boss;

 output += employee.toString() + " earned $" +
 precision2.format(employee.earnings()) + "\n" +
 boss.toString() + " earned $" +
 precision2.format(boss.earnings()) + "\n";

 // Employee reference to a CommissionWorker
 employee = commissionWorker;

 output += employee.toString() + " earned $" +
 precision2.format(employee.earnings()) + "\n" +
 commissionWorker.toString() + " earned $" +
 precision2.format(
 commissionWorker.earnings()) + "\n";

 // Employee reference to a PieceWorker
 employee = pieceWorker;

 output += employee.toString() + " earned $" +
 precision2.format(employee.earnings()) + "\n" +
 pieceWorker.toString() + " earned $" +
 precision2.format(pieceWorker.earnings()) + "\n";

 // Employee reference to an HourlyWorker
 employee = hourlyWorker;

 output += employee.toString() + " earned $" +
 precision2.format(employee.earnings()) + "\n" +
 hourlyWorker.toString() + " earned $" +
 precision2.format(hourlyWorker.earnings()) + "\n";

 JOptionPane.showMessageDialog(null, output,
 "Demonstrating Polymorphism",
 JOptionPane.INFORMATION_MESSAGE);

CS 116 – Week 2 – Page 5

 System.exit(0);
 }

} // end class Test

You are also given the following class:
// Employee.java
// Abstract base class Employee.

public abstract class Employee {
 private String firstName;
 private String lastName;
 // constructor
 public Employee(String first, String last)
{
 firstName = first;
 lastName = last;
 }
 // get first name
 public String getFirstName()
{
 return firstName;
 }
 // get last name
 public String getLastName()
 {
 return lastName;
 }
 public String toString()
 {
 return firstName + ' ' + lastName;
 }
//Abstract method that must be implemented for each derived
class of Employee from which
//objects are instantiated.
 public abstract double earnings();
} // end class Employee

a) Create a Boss.java class. Class Boss is derived from Employee. The public
methods include a constructor that takes a first name, a last name and a weekly
salary as arguments and passes the first name and last name to the Employee
constructor to initialize the firstName and lastName members of the super class
part of the subclass object. Other public methods include a setWeeklySalary
method to assign a new value to private instance variable weeklySalary; an
earnings method defining how to calculate a Boss’s earnings; and a toString

CS 116 – Week 2 – Page 6

method that forms a String containing the type of the employee (I.e.,”Boss: “
followed by the boss’s name.

b) Create a CommissionWorker.java. Class CommissionWorker is derived from
Employee. The public methods include a constructor that takes a first name, a last
name, a salary, a commission and a quantity of items sold as arguments and
passes the first name and last name to the Employee constructor; set methods to
assign new values to instance variables salary, commisssion and quantity; an
earnings method to calculate a Commission-Worker’s earnings; and a toString
method that forms a String containing the employee type (I.e. “Commission
worker: “) followed by the worker’s name.

c) Create a PieceWorker.java. Class PieceWorker is derived from Employee. The
public methods include a constructor that takes a first name, a last name, a wage
per piece and a quantity of items produced as arguments and passes the first name
and last name to the Employee constructor; set methods to assign new values to
instance variables wagePerPiece and quantity; an earnings method defining how
to calculate a PieceWorker’s earnings; and a toString method that forms a String
containing the type of the employee (ie. “Piece woker: “) followed by the
pieceworker’s name.

d) Create a HourlyWorker.java. Class HourlyWorker is derived from Employee.
The public methods include a constructor that takes a first name, a last name, a
wage and the number of hours worked as arguments and passes the first name and
last name to the Employee constructor; set methods to assign new values to
instance variables wage and hours; an earnings method defining how to calculate
an HourlyWorker’s earnings; and a toString method that forms a String
containing the type of the employee (ie. “Hourly worker: “) followed by the
hourly worker’s name.

CS 116 – Week 2 – Page 7

CS 116

Week 2: Lab Solution

a) Boss.java class

// Boss.java
// Boss class derived from Employee.
public final class Boss extends Employee
{
 private double weeklySalary;
 // constructor for class Boss
 public Boss(String first, String last, double salary)
 {
 super(first, last); // call superclass constructor
 setWeeklySalary(salary);
 }
 // set Boss's salary
 public void setWeeklySalary(double salary)
 {
 weeklySalary = (salary > 0 ? salary : 0);
 }
 // get Boss's pay
 public double earnings()
 {
 return weeklySalary;
 }
 // get String representation of Boss's name
 public String toString()
 {
 return "Boss: " + super.toString();
 }
} // end class Boss

b) CommissionWorker.java class

// CommissionWorker.java
// CommissionWorker class derived from Employee
public final class CommissionWorker extends Employee {
 private double salary; // base salary per week
 private double commission; // amount per item sold
 private int quantity; // total items sold for week
 // constructor for class CommissionWorker
 public CommissionWorker(String first, String last,
 double salary, double commission, int quantity)
 {
 super(first, last); // call superclass constructor

CS 116 – Week 2 – Page 8

 setSalary(salary);
 setCommission(commission);
 setQuantity(quantity);
 }
 // set CommissionWorker's weekly base salary
 public void setSalary(double weeklySalary)
 {
 salary = (weeklySalary > 0 ? weeklySalary : 0);
 }
 // set CommissionWorker's commission
 public void setCommission(double itemCommission)
 {
 commission = (itemCommission > 0 ? itemCommission : 0);
 }
 // set CommissionWorker's quantity sold
 public void setQuantity(int totalSold)
 {
 quantity = (totalSold > 0 ? totalSold : 0);
 }
 // determine CommissionWorker's earnings
 public double earnings()
 {
 return salary + commission * quantity;
 }
 // get String representation of CommissionWorker's name
 public String toString()
 {
 return "Commission worker: " + super.toString();
 }
} // end class CommissionWorker

c) PieceWorker.java class

// PieceWorker.java
// PieceWorker class derived from Employee
public final class PieceWorker extends Employee {
 private double wagePerPiece; // wage per piece output
 private int quantity; // output for week
 // constructor for class PieceWorker
 public PieceWorker(String first, String last,
 double wage, int numberOfItems)
 {
 super(first, last); // call superclass constructor
 setWage(wage);
 setQuantity(numberOfItems);
 }
 // set PieceWorker's wage

CS 116 – Week 2 – Page 9

 public void setWage(double wage)
 {
 wagePerPiece = (wage > 0 ? wage : 0);
 }
 // set number of items output
 public void setQuantity(int numberOfItems)
 {
 quantity = (numberOfItems > 0 ? numberOfItems : 0);
 }
 // determine PieceWorker's earnings
 public double earnings()
 {
 return quantity * wagePerPiece;
 }
 public String toString()
 {
 return "Piece worker: " + super.toString();
 }
} // end class PieceWorker

d) HourlyWorker.java class

// HourlyWorker.java
// Definition of class HourlyWorker

public final class HourlyWorker extends Employee {
 private double wage; // wage per hour
 private double hours; // hours worked for week
 // constructor for class HourlyWorker
 public HourlyWorker(String first, String last,
 double wagePerHour, double hoursWorked)
 {
 super(first, last); // call superclass constructor
 setWage(wagePerHour);
 setHours(hoursWorked);
 }
 // Set the wage
 public void setWage(double wagePerHour)
 {
 wage = (wagePerHour > 0 ? wagePerHour : 0);
 }
 // Set the hours worked
 public void setHours(double hoursWorked)
 {
 hours = (hoursWorked >= 0 && hoursWorked < 168 ?
 hoursWorked : 0);
 }

CS 116 – Week 2 – Page 10

 // Get the HourlyWorker's pay
 public double earnings() { return wage * hours; }

 public String toString()
 {
 return "Hourly worker: " + super.toString();
 }
} // end class HourlyWorker

