
CS 351 – Week 10 - Page 1 

 

CS 351 

Week 10 

 

Reading:  

 

1. The C Programming Language, Dennis M Ritchie, Kernighan, Brain.W  

2. Network Programming for Windows,Second Edition,Anthony Jones & Jim Ohlund 

 

Objectives:  

 

1. An Introduction to Network Programming. 

2. To learn about Socket Programming. 

3. To learn basic concepts of Interprocess Communication. 

 

Concepts:  
 

1. Introduction to Windows Sockets 

2. Windows Sockets Concepts 

3. Interprocess Communication 

4. Overview Of Lab 

 

Outline:  
 

1. Introduction to Windows Sockets 

a. What is Windows Sockets? 

b.  What are its Benefits?  
2. Windows Socket Concepts 

a. The OSI Network Model 

b. The Winsock Network Model 

c. OSI Layers and Winsock 

3. Interprocess Communication 

a. Definition 

b. Send and Receive operators 

c. Performance Criteria 

d. Messages 

e. Possible Failures 

4. Overview of Lab 

 

Reference: 

 
1. http://www.sockets.com/toc2.htm#Chapter1 

2. http://www.cs.mcgill.ca/~cs577/lectures/577-communication.pdf 

3. http://en.wikipedia.org/wiki/Interprocess_Communication 

4. http://www.cafeaulait.org/books/jnp3/index.html 

5. Stevens, Richard UNIX Network Programming, Volume 2, Second Edition: Interprocess 

Communications. Prentice Hall, 1999. ISBN 0-13-081081-9 
 

 

 

 



CS 351 – Week 10 - Page 2 

 

CS 351: Week 10 – Lecture Notes 

 

 

1. Introduction to Windows Sockets 

 
A. What is Windows Socket? 

1. WinSock is the standard sockets programming API for the Windows operating 

system 

2. WinSock has been the standard sockets library shipped with all versions of 

Windows starting with Windows 95. 

3. WinSock was created to allow different Microsoft Windows TCP/IP software 

applications to communicate. 

 
B. What are its Benefits? 

• An Open Standard 

• Provides Source Code Portability 

• Supports Dynamic Linking 

• Benefits Summary  

 

2. Windows Socket Concepts 

A. The OSI Network Model 

• Services & Interfaces 

B. The WinSock Network Model 

• Information and Data 

• Application Protocols 

C.OSI layers and WinSock 

• Application Layer  

• Presentation Layer 

• Session Layer  

• Transport Layer 

• Network Layer 

• Data Link Layer 

• Physical Layer  

What is TCP/IP? 

Transport Services 

• Connection-less Services: UDP 



CS 351 – Week 10 - Page 3 

 

CS 351: Week 10 – Lecture Notes 

• Connection-oriented Services: TCP 

• Deciding on a Transport: UDP versus TCP 

Network services 

• IP Services 

• ICMP Services 

Support Protocols & Services 

• Domain Name Service (DNS) 

• Address Resolution Protocol (ARP) 

• Other Support Protocols 

 

3. Interprocess Communication 

 
A. Definition 

1. a set of techniques for the exchange of data among two or more threads in one 

or more processes 

2. Processes may be running on one or more computers connected by a network. 

IPC techniques are divided into methods for message passing, synchronization, shared 

memory, and remote procedure calls (RPC) 

3. The method of IPC used may vary based on the bandwidth and latency of 

communication between the threads, and the type of data being communicated. 

4. IPC may also be referred to as inter-thread communication and inter-

application communication. 

 

B. Send and Receive Operators 

                        One communication “unit” consists of two primitives 

� The send primitive is called by the sending process (caller, 

sender) 

� A corresponding receive primitive must be called by the 

receiving process (callee, receiver) 

� Basic assumption: Non-blocking send / blocking 

receive 

Determines the behavior upon calling send/receive 

� Non-blocking send: sending process is allowed to proceed as 

soon as the underlying layer has received the message 

� Blocking receive: The receive primitive blocks until a message arrives 

 
C. Performance Criteria 

                                 Latency (response time): 

• Delay between sending of a message by one process and its 

receipt by another process 



CS 351 – Week 10 - Page 4 

 

CS 351: Week 10 – Lecture Notes 
 

 

• Time for the first bit to be transmitted through the network 

• Delay in accessing the network 

• Marshalling and send time at sender (CPU time!) 

• Receive and unmarshalling time at receiver (CPU time) 

• Bandwidth (throughput) 

o Total amount of information that can be transmitted in a given time 
 

 

D. Messages 

  

                 Mapping Data Structures and Data Items to Messages 

o Messages are sequential -> data must be flattened 

o Agreement of external data format 

• XML, Corba Common Data Representatin, Java object serialization 

• Marshalling Messages (serialization) 

• Unmarshalling Messages (unserialization) 

• Destination 

• Internet address (=host) + port (location dependent) 

• Port is a message destination within a computer, 

• process can have several ports from which to receive messages. 

• Any process who knows the number of a port can send a message to it 

• Servers generally publicize their port number for use by clients. 

• Service (location independent); 

o Service name is translated at runtime to server location 

 
E. Synchronous Vs Asynchronous 

 

             Synchronous 

• each message is transmitted within a known bounded time 

• The time to execute each step of a process has known lower and 

upper bounds 

• Each process has a local clock whose drift rate from real time has a 

known bound 

            Asynchronous 

• Message may need an arbitrary time to be transmitted 

• Each step of a process can take an arbitrary time 

• Clocks drift rates are arbitrary 
 

        

 

 

 

 



CS 351 – Week 10 - Page 5 

 

       CS 351: Week 10 – Lecture Notes 

 
         

4. Overview of Lab 

 

/* a server in the unix domain.  The pathname of  

   the socket address is passed as an argument */ 

#include <sys/types.h> 

#include <sys/socket.h> 

#include <sys/un.h> 

#include <stdio.h> 

void error(char *); 

int main(int argc, char *argv[]) 

{ 

   int sockfd, newsockfd, servlen, clilen, n; 

   struct sockaddr_un  cli_addr, serv_addr; 

   char buf[80]; 

 

   if ((sockfd = socket(AF_UNIX,SOCK_STREAM,0)) < 0) 

       error("creating socket"); 

   bzero((char *) &serv_addr, sizeof(serv_addr)); 

   serv_addr.sun_family = AF_UNIX; 

   strcpy(serv_addr.sun_path, argv[1]); 

   servlen=strlen(serv_addr.sun_path) +  

                     sizeof(serv_addr.sun_family); 

   if(bind(sockfd,(struct sockaddr *)&serv_addr,servlen)<0) 

       error("binding socket");  

 

   listen(sockfd,5); 

   clilen = sizeof(cli_addr); 

   newsockfd = accept( 

        sockfd,(struct sockaddr *)&cli_addr,&clilen); 

   if (newsockfd < 0)  

        error("accepting"); 

   n=read(newsockfd,buf,80); 

   printf("A connection has been established\n"); 

   write(1,buf,n); 

   write(newsockfd,"I got your message\n",19); 

} 

 

void error(char *msg) 

{ 

    perror(msg); 

    exit(0); 

} 

 

 



CS 351 – Week 10 - Page 6 

 

CS 351: Week 10 – Lecture Notes 
 

/* a client in the unix domain */ 

#include <sys/types.h> 

#include <sys/socket.h> 

#include <sys/un.h> 

#include <stdio.h> 

void error(char *); 

 

void main(int argc, char *argv[]) 

{ 

   int sockfd, servlen,n; 

   struct sockaddr_un  serv_addr; 

   char buffer[82]; 

 

   bzero((char *)&serv_addr,sizeof(serv_addr)); 

   serv_addr.sun_family = AF_UNIX; 

   strcpy(serv_addr.sun_path, argv[1]); 

   servlen = strlen(serv_addr.sun_path) +  

                 sizeof(serv_addr.sun_family); 

   if ((sockfd = socket(AF_UNIX, SOCK_STREAM,0)) < 0) 

       error("Creating socket"); 

   if (connect(sockfd, (struct sockaddr *)  

                         &serv_addr, servlen) < 0) 

       error("Connecting"); 

   printf("Please enter your message: "); 

   bzero(buffer,82); 

   fgets(buffer,80,stdin); 

   write(sockfd,buffer,strlen(buffer)); 

   n=read(sockfd,buffer,80); 

   printf("The return message was\n"); 

   write(1,buffer,n);    

} 

 

void error(char *msg) 

{ 

    perror(msg); 

    exit(0); 

} 

 

 

Exercise 

 

1. Setup a two-way pipe between parent and child processes in a C program. i.e. 

both can send and receive signals. 

2. Write a Program to create a Socket and Communicate between and a Client 

and a Server through Sockets. 


