

 CS4XX – Week 14 1

CS4XX INTRODUTION TO COMPILER THEORY

 Week 14

Reading:

Chapter 10 from Principles of Compiler Design, Alfred V. Aho & Jeffrey D. Ullman

Objectives:

1. To learn the concepts of Code generation

Concepts:

 1. Code optimization Introduction---------------------------------1 hour

 2. Code optimization concepts------------------------------------- 2 hours

Outlines:

1. Introduction

2. The principal sources of optimization

3. Optimization of basic blocks

4. Loops in Flow Graphs

 CS4XX – Week 14 2

CS 4XX Week 14 – Lecture Notes

1. Code Optimization

a. Introduction

o Criteria for Code-Improving Transformations – The steps that

can be followed to improve code transformations.

o Getting Better Performance – Methods that can be used to

improve the performance of the system.

o An Organization for an Optimizing Compiler – The levels at

which a program can be improved, to optimize the compiler

performance.

b. The Principal Sources of Optimization

o Function-Preserving Transformations – Methodologies for a

compiler to improve the performance of a program without

changing its functionality.

o Common Subexpressions – How recurring expressions can be

kept out of the compilation process to improve performance.

o Copy Propagation – The use of an assigned expression to reduce

the compiler time in a larger expression.

o Dead-Code Elimination - Eliminating variables that are no longer

in use.

o Loop Optimizations – Optimizing inner loops to improve the

performance.

o Code Motion – Separating repeating expressions and placing

them outside the loop to save execution time.

o Induction Variables and Reduction in Strength – An quick sort

example of an inside-out loop and usage of induction variables.

C. Optimization of basic blocks

 CS4XX – Week 14 3

 a. Structure preserving Transformation

1. In order to code improve transformation for basic blocks

structure preserving transformation is included such as sub

expression elimination and dead-lock elimination

b. Use of Algebraic Identities

1. Replacing more expensive more expensive operator bya

cheaper one.

c. Language specification

1. It should be made carefully, to determine what

rearrangement of computations is permitted.

D. Loops in Flow Graph

 a. Dominators

1. Dominator Tree -- Useful way of presenting dominators

information is in a tree, called Dominator tree. In which the

initial node is always root, and each node dominates only

its descendents in a tree.

2. Unique immediate dominator --- The existence of

dominator trees follows from a property of dominators;

each node n has a unique immediate dominator m that is

the last dominator of n on any path from the initial node to

n.

b. Natural loops

3. Find out all the loops in a flow graph.

4. Search edges in the flow graph.

5. Essential property of Natural loop

 CS4XX – Week 14 4

6. Loop must have a single entry point, called the header. This

entry point dominates all nodes in the loop, or it would not

be the sole entry to the loop.

7. There must be at least one way to iterate the loop, i.e. at

least one path back to the header.

c. Inner Loops and Pre-Header

1. One that contains no other loops --- unless two loops have

the same header, they are either disjointed or one is entirely

contained the other loop.

2. Neglecting loops with the same header for the moment, we

have natural notion of inner loop which contains no other

loops.

3. Basic Requirement of Pre-Header --- Several

transformations require us to move statement before the

header, we therefore begin treatment of a loop L by

creating a new block, called the PREHEADER.

d. Reducible flow graphs

1. When to reduce Flow Graph --- Exclusive use of structured

flow of control statements whose flow graphs are always

reducible.

a. if-then-else,

b. while-do,

c. continue,

d. break statements

2. Only entry to a loop is through its header --- It is an

important property of reducible flow graphs, namely that

there are no jumps into the middle of loops from outside.

 CS4XX – Week 14 5

3. Forward Edges and Back Edges --- A flow graph is

reducible if and only if we can partition the edges in to two

disjoints groups, often called the forward edges and back

edge.

