
 CS 560

Topological Sorting
De Melo, Bianca

 CS 560
Computer Science Department
Illinois Institute of Technology

Chicago, Illinois 60616
bdemalo@hawk.iit.edu

Abstract - This paper defines what topological sorting is,
shows some of the most known algorithms to this kind of
sorting and discusses its use in many other fields, such as
Computer Science and Project Management. It also lists
examples of ordered graphs that need to have its vertices
ordered using topological sorting and discusses the non-
uniqueness in the results of most of the graphs that are
sorted. Topological sorting is frequently used to define, in
a chained list of events, which one comes first and what
comes next, being really useful in scheduling and planning,
modular programming, such as in other applications in
many fields.
Index Terms - Algorithms, Applications, Computer Science,
Topological sorting.

DEFINITION

Topological sorting is one of many possible ways to solve
problems involving dependency resolutions. This type of
sorting consists in ordering vertices of a directed graph, such
that for every edge (u,v), u comes before v in the order.

Topological sorting has lots of applications, such as solving
dependency issues in modular programming, or ordering tasks
in many types of projects so it becomes more clear which
tasks must be completed first in order to keep the project
going.

To make the topological order possible, the graph that
represents the tasks or the objects of interest needs to be
directed and acyclic. When a directed graph has cycles, it’s
not possible to establish which vertices come first.

ALGORITHMS

There are lots of algorithms to topological sorting, most
of them run in linear time, O(│V│+│E│).

Kahn’s algorithm works separating the vertices that have
predecessors of the ones that don’t and inserting them in a list
in the following order: first, one the vertices with no
predecessors (also called ‘start nodes’) is picked, in any order,
and then, for each one of the start nodes, all the edges that
come out of them are removed. If another vertex becomes
without its predecessors after the edge removal, it goes to the
set of start nodes, and can be picked from that moment on.

The depth-first search based algorithm starts examining the
vertices that have edges pointing to them, and not the
opposite, as Kahn’s algorithm.

Both algorithms return error when the graphs given initially
have directed cycles. When a graph has a directed cycle, it is
not possible to return and ordered path, since there is a mutual
dependency between two nodes.

The existence of cycles in the graphs that are to be ordered
is a decisive factor concerning whether the graphs can or
cannot be ordered. The existence of mutual dependencies
between nodes means that both nodes are interdependent and
it’s not possible to define which one comes before the other.

KAHN’S ALGORITHM

This section shows Kahn’s algorithm.
Algorithm: TopologicalKahn
Input: A directed acyclic graph G(V,E)
Q ← Queue({u ϵ V: degin(u) = 0})
i ← 1
while Q ≠ 0
u ← pop(Q)
ord(u) ← i
i ← i + 1
for each (u, v) ϵ E
E ← E \ {(u,v)}
if degin (v) = 0
push(Q, v)
return ord
Output: all the vertices in V sorted in topological order,
represented by 'ord'.
Kahn's algorithm has a linear complexity of O(│V│+│E│).

DEPTH-FIRST SEARCH BASED ALGORITHM

This section describes the depth-first search based algorithm
to topological sorting.
Algorithm: TopologicalDFS
Input: A directed acyclic graph G(V,E)
S ← Set({u ϵ V: degout(u) = 0})
L ← empty
for each u ϵ S
visit (u)
Output: all the vertices in V sorted in topological order in the
list L. The algorithm visit (node n) returns the ordered
vertices.

Algorithm: visit (node n)
Input: node n

CS 560 1

mailto:bdemalo@hawk.iit.edu

 CS 560

if n has not been visited, then mark n as visited
for each v, (v, n) ϵ E
visit (v)
L.add (n)
return L
Output: L, the list with the ordered vertices.

EXAMPLES

In the following section, a few examples of the uses of
topological sorting will be listed.
 The example below shows applications of topological
sorting in modular programming. In order to develop the
modules as quickly as possible, it's important to know what
modules can be fully developed first, so when the team moves
to the next module there are no pending tasks in the finished
module.
 Of course this example does not transfer completely to the
real world, since errors often appear on software and the
developers need to go back and fix what's wrong in a module,
but even so it's important to know what to do first, to avoid as
much as possible jumping from one module to another from
time to time - so mutual dependency is not recommended. For
instance, if a graph representing the architecture of a software
has cycles in their modules, it often means there is some kind
of problem, and cycles can and should be removed when we're
talking about software maintenance.

FIGURE 1
GRAPH REPRESENTING MODULES IN A SOFTWARE PRODUCT.

In figure 1, we have a graph that represents modules in a
software product that we would like to order topologically to
decide which parts should be developed first so every model
completed can run fully, even without all the parts working.
 In figure 2, it's presented one of the many solutions. It can
also be considered that some of those modules could be
developed in parallel so more time can be saved in the
development activity.
 But despite of this observation, one possible order is A -> B
-> F -> D -> C -> E.
 Another possible order is A -> C -> F -> D -> E -> B.

FIGURE 2
GRAPH SHOWN IN FIGURE 1 ORDERED USING TOPOLOGICAL SORTING.

Another common problem in topological sorting is the one
with the order to wear each piece of clothing.

FIGURE 3
GRAPH REPRESENTING THE CORRECT ORDER TO WEAR CLOTHES.

Figure 3 shows a graph that represents the correct way to wear
pieces of clothing so no one wears a tie under the shirt or
wears their shoes before having the socks on. It's also
important to wear underwear before the pants and to only wear
the shoes after wearing the pants.
 There are lots of restrictions in this graph, but there are also
things that can be worn in any step of the process, like the
watch.

CS 560 2

 CS 560

FIGURE 4
ONE OF MANY POSSIBLE SOLUTIONS TO THE PROBLEM SHOWN IN FIG. 3.

Figure 4 shows one of many solutions for the problem
presented in Figure 3. Some of other solutions would be
adding the watch in any other position desired by the person
who's wearing the pieces of clothing.
 The person could also leave the socks and shoes to be worn
last, and the jacket too.
 As said before, it's usually uncommon to have uniqueness in
the sorting results, as most of them do have other solutions
equally correct.
 Uniqueness in topological sorting are proved to occur in
graphs that have Hamiltonian path, where there is only one
initial node that leads to only one other node and so on, until it

reaches the end of the graph, so there is only one first step to
be taken and only one way to go from there, but that's unusual.
 There are tons of examples that could be taken to
demonstrate the applications of topological sorting, but the
two problems shown in the paper are two of the most common
problems seen and both have similar abstractions.

OTHER APPLICATIONS OF TOPOLOGICAL SORTING

Other applications of topological sorting are in database, when
trying to solve a dependency problem with foreign keys, or
prerequisites of classes in an specific course, logic synthesis,
and resolving different kinds of dependencies in lots of
different situations.

ACKNOWLEDGMENT

The algorithms presented in this paper are proven to be
efficient ones and useful in many aspects and areas of
knowledge. Topological sorting is an efficient way to organize
different types of tasks and it's one of the most popular
organizing methods.

REFERENCES

Auno, M., Andermo, M., 'Lecture 5: Graph Algorithms 1', DD2458 - Problem
Solving and Programming under pressure. Taken from
<http://www.csc.kth.se/utbildning/kth/kurser/DD2458/popup08/anteckni
ngar/lecnotes05/lecnotes05.pdf>

Brum, A., 'Lecture 12: Graph Algorithms I', CMU 15-451 - Algorithms. Taken
from <http://www.cs.cmu.edu/~avrim/451f08/lectures/lect1002.pdf>

McDonald, S., 'Topological Sorting Acyclic Directed Graphs', Stephen
McDonald's Blog. Taken from
<http://blog.jupo.org/2012/04/06/topological-sorting-acyclic-directed-
graphs/>

Zhang, H., '22c:21 - Computer Science II Data Structures - Topological Sort',
22c:21 - Computer Science II Data Structures. Taken from
<http://homepage.cs.uiowa.edu/~hzhang/c21/notes/18TopoSort.pdf>

Various, 'Topological Sort', Rosetta Code. Taken from
<http://rosettacode.org/wiki/Topological_sort>

Rao, R., 'Lecture 20: Topo-Sort and Djikstra's Greedy Idea', CSE 326 - Data
Structures and Algorithms. Taken from
<https://www.cs.washington.edu/education/courses/326/03wi/lectures/R
aoLect20.pdf>

Various, 'Topological Sorting', Wikipedia, The Free Encyclopedia. Taken
from <http://en.wikipedia.org/wiki/Toopological_sorting>

Wisman, R. F., 'Topological Sorting', C455 Analysis of Algorithms - Class
Notes. Taken from
<http://homepages.ius.edu/rwisman/C455/html/notes/Chapter22/TopSort
.htm>

CS 560 3

http://homepages.ius.edu/rwisman/C455/html/notes/Chapter22/TopSort.htm
http://homepages.ius.edu/rwisman/C455/html/notes/Chapter22/TopSort.htm
https://www.cs.washington.edu/education/courses/326/03wi/lectures/RaoLect20.pdf
https://www.cs.washington.edu/education/courses/326/03wi/lectures/RaoLect20.pdf
http://rosettacode.org/wiki/Topological_sort
http://homepage.cs.uiowa.edu/~hzhang/c21/notes/18TopoSort.pdf
http://blog.jupo.org/2012/04/06/topological-sorting-acyclic-directed-graphs/
http://blog.jupo.org/2012/04/06/topological-sorting-acyclic-directed-graphs/
http://www.cs.cmu.edu/~avrim/451f08/lectures/lect1002.pdf
http://www.csc.kth.se/utbildning/kth/kurser/DD2458/popup08/anteckningar/lecnotes05/lecnotes05.pdf
http://www.csc.kth.se/utbildning/kth/kurser/DD2458/popup08/anteckningar/lecnotes05/lecnotes05.pdf

