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Abstract - This paper defines what topological sorting is, 
shows some of the most known algorithms to this kind of 
sorting and discusses its use in many other fields, such as 
Computer Science and Project  Management.  It also lists 
examples of ordered graphs that need to have its vertices 
ordered  using topological  sorting  and discusses  the non-
uniqueness  in the results of  most of  the graphs that are 
sorted. Topological sorting is frequently used to define, in 
a chained list of events, which one comes first and what 
comes next, being really useful in scheduling and planning, 
modular  programming,  such  as  in  other  applications  in 
many fields.
Index Terms -  Algorithms, Applications,  Computer  Science, 
Topological sorting.

DEFINITION

Topological sorting is one of many possible ways to solve 
problems  involving  dependency  resolutions.  This  type  of 
sorting consists in ordering vertices of a directed graph, such 
that for every edge (u,v), u comes before v in the order.

Topological sorting has lots of applications, such as solving 
dependency issues in modular programming, or ordering tasks 
in  many types  of  projects  so  it  becomes  more  clear  which 
tasks  must  be  completed  first  in  order  to  keep  the  project 
going.

To  make  the  topological  order  possible,  the  graph  that 
represents  the  tasks  or  the  objects  of  interest  needs  to  be 
directed and acyclic.  When a directed graph has cycles,  it’s 
not possible to establish which vertices come first.

ALGORITHMS

There are lots of algorithms to topological sorting, most 
of them run in linear time, O(│V│+│E│).

Kahn’s  algorithm works separating the vertices  that  have 
predecessors of the ones that don’t and inserting them in a list 
in  the  following  order:  first,  one  the  vertices  with  no 
predecessors (also called ‘start nodes’) is picked, in any order, 
and then, for each one of the start nodes, all the edges that 
come out  of  them are  removed.  If  another  vertex  becomes 
without its predecessors after the edge removal, it goes to the 
set of start nodes, and can be picked from that moment on.

The depth-first search based algorithm starts examining the 
vertices that have edges pointing to them, and not the 
opposite, as Kahn’s algorithm.

Both algorithms return error when the graphs given initially 
have directed cycles. When a graph has a directed cycle, it is 
not possible to return and ordered path, since there is a mutual 
dependency between two nodes.

The existence of cycles in the graphs that are to be ordered 
is  a  decisive  factor  concerning  whether  the  graphs  can  or 
cannot  be  ordered.  The  existence  of  mutual  dependencies 
between nodes means that both nodes are interdependent and 
it’s not possible to define which one comes before the other. 

KAHN’S ALGORITHM

This section shows Kahn’s algorithm.
Algorithm: TopologicalKahn
Input: A directed acyclic graph G(V,E)
Q ← Queue({u ϵ V: degin(u) = 0})
i ← 1
while Q ≠ 0
u ← pop(Q)
ord(u) ← i
i ← i + 1
for each (u, v) ϵ E
E ← E \ {(u,v)}
if degin (v) = 0
push(Q, v)
return ord
Output: all  the  vertices  in  V  sorted  in  topological  order, 
represented by 'ord'.
Kahn's algorithm has a linear complexity of O(│V│+│E│).

DEPTH-FIRST SEARCH BASED ALGORITHM

This section describes the depth-first search based algorithm 
to topological sorting.
Algorithm: TopologicalDFS
Input: A directed acyclic graph G(V,E)
S ← Set({u ϵ V: degout(u) = 0})
L ← empty
for each u ϵ S
visit (u)
Output: all the vertices in V sorted in topological order in the 
list  L.  The  algorithm  visit  (node  n)  returns  the  ordered 
vertices.

Algorithm: visit (node n)
Input: node n
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if n has not been visited, then mark n as visited
for each v, (v, n) ϵ E
visit (v)
L.add (n)
return L
Output: L, the list with the ordered vertices.

EXAMPLES

In  the  following  section,  a  few  examples  of  the  uses  of 
topological sorting will be listed.
    The  example  below  shows  applications  of  topological 
sorting  in  modular  programming.  In  order  to  develop  the 
modules as quickly as possible, it's  important to know what 
modules can be fully developed first, so when the team moves 
to the next module there are no pending tasks in the finished 
module.
    Of course this example does not transfer completely to the 
real  world,  since  errors  often  appear  on  software  and  the 
developers need to go back and fix what's wrong in a module, 
but even so it's important to know what to do first, to avoid as 
much as possible jumping from one module to another from 
time to time - so mutual dependency is not recommended. For 
instance, if a graph representing the architecture of a software 
has cycles in their modules, it often means there is some kind 
of problem, and cycles can and should be removed when we're 
talking about software maintenance.

FIGURE 1
GRAPH REPRESENTING MODULES IN A SOFTWARE PRODUCT.

In  figure  1,  we  have  a  graph  that  represents  modules  in  a 
software product that we would like to order topologically to 
decide which parts should be developed first so every model 
completed can run fully, even without all the parts working.
    In figure 2, it's presented one of the many solutions. It can 
also  be  considered  that  some  of  those  modules  could  be 
developed  in  parallel  so  more  time  can  be  saved  in  the 
development activity.
    But despite of this observation, one possible order is A -> B 
-> F -> D -> C -> E.
   Another possible order is A -> C -> F -> D -> E -> B.

FIGURE 2
GRAPH SHOWN IN FIGURE 1 ORDERED USING TOPOLOGICAL SORTING.

Another  common problem in topological  sorting is  the  one 
with the order to wear each piece of clothing.

FIGURE 3
GRAPH REPRESENTING THE CORRECT ORDER TO WEAR CLOTHES.

Figure 3 shows a graph that represents the correct way to wear 
pieces  of  clothing so no one wears  a  tie  under the shirt  or 
wears  their  shoes  before  having  the  socks  on.  It's  also 
important to wear underwear before the pants and to only wear 
the shoes after wearing the pants.
    There are lots of restrictions in this graph, but there are also 
things that can be worn in any step of the process,  like the 
watch.
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FIGURE 4
ONE OF MANY POSSIBLE SOLUTIONS TO THE PROBLEM SHOWN IN FIG. 3.

Figure  4  shows  one  of  many  solutions  for  the  problem 
presented  in  Figure  3.  Some  of  other  solutions  would  be 
adding the watch in any other position desired by the person 
who's wearing the pieces of clothing.
     The person could also leave the socks and shoes to be worn 
last, and the jacket too.
    As said before, it's usually uncommon to have uniqueness in 
the sorting results, as most of them do have other solutions 
equally correct.
   Uniqueness in topological  sorting are proved to occur in 
graphs that  have Hamiltonian path, where there is  only one 
initial node that leads to only one other node and so on, until it 

reaches the end of the graph, so there is only one first step to 
be taken and only one way to go from there, but that's unusual. 
    There  are  tons  of  examples  that  could  be  taken  to 
demonstrate  the  applications  of  topological  sorting,  but  the 
two problems shown in the paper are two of the most common 
problems seen and both have similar abstractions.

OTHER APPLICATIONS OF TOPOLOGICAL SORTING

Other applications of topological sorting are in database, when 
trying to solve a dependency problem with foreign keys,  or 
prerequisites of classes in an specific course, logic synthesis, 
and  resolving  different  kinds  of  dependencies  in  lots  of 
different situations. 
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