
 CS560

CS560 Fall2012 1

Topological Sorting

Manju Muralidharan Priya
CS 560

Computer Science Department

Illinois Institute of Technology

Chicago, Illinois 60616

pmanjumu@hawk.iit.edu

Abstract - A topological sort is used to arrange the

vertices of a directed acyclic graph in a linear

order. In this paper we introduce topological

sorting and discuss algorithms for the same, along

with its properties and applications. This paper

discusses directed acyclic graphs with

interdependent vertices. Partial ordering and total

ordering relation to topological sorting has also

been discussed in this paper. This paper serves as

an introductory document for the topic of

topological sorting.

Keywords - Topological sort, Directed acyclic graph,

ordering, sorting algorithms.

INTRODUCTION

I. Problem definition

In graph theory, a topological sort or topological

ordering of a directed acyclic graph (DAG) is a linear

ordering of its nodes in which each node comes

before all nodes to which it has outbound edge.

i.e., if a DAG has vertices u and v and edge from u to

v, in the sorted order u must appear before v.

Some notations and definitions used in this paper are

defined below.

Definition 1.1 A Directed acyclic graph is a directed

graph where no path starts and ends on the same

vertex. In a DAG with nodes x and y with edge x->y

there is no y->x. A DAG is depicted as D= (V,E),

where V is a vertex and E is an edge between two

vertices.

Definition 1.2 Topological sort A topological

ordering ordD, of a directed acyclic graph D = (V, E)

maps each

vertex to a priority value such that ordD(x) < ordD(

y) holds for all edges.

FIGURE 1

SAMPLE DIRECTED ACYCLIC GRAPH.

One of the many topological orders of the FIGURE 1

is

7 -> 5-> 3-> 11-> 8-> 9->2-> 10

ALGORITHMS FOR TOPOLOGICAL

SORTING

Many algorithms for topological sorting have been

published. Some of the important algorithms are

discussed.

I. Breadth First Search – Kahn (1969)

The very first algorithm was written by Kahn (1969)
[7]

 in this algorithm (lift from Wikipedia). In this

algorithm, the sorted order is started by accessing the

nodes in the graph which do not have any incoming

edges. As topological sort can be only done on

acyclic graphs, this set must contain at least one

mailto:pmanjumu@hawk.iit.edu

 CS560

CS560 Fall2012 2

element that does not have any incoming edges.

Graph traversal is started with the vertices in the

above set. The vertices on the outgoing edge are

considered and that edge is removed. That node is

checked again for anymore incoming edges, if there

are none it is inserted into the set of sorted elements.

The algorithm is as follows

L ← Empty list that will contain the sorted

elements

S ← Set of all nodes with no incoming edges

while S is non-empty do

 remove a node n from S

 insert n into L

 for each node m with an edge e from n to

m do

 remove edge e from the graph

 if m has no other incoming edges

then

 insert m into S

if graph has edges then

 return error (graph has at least one

cycle)

else

 return L (a topologically sorted order)

The solution for this breadth first search solution for

FIGURE 1 will be

7-> 5-> 3-> 11-> 8-> 2-> 9-> 10

This algorithm uses a breadth first search. This

technique finds the shortest path solution from start

to end.

II. Depth first Algorithm

Depth First algorithm traverses the graph from the

start node and progresses downwards. When a node

with more incoming nodes is detected, back tracking

is done and a previous level node is traversed.

The algorithm is as follows
[3]

DFS(Node start) {

initialize stack s to hold start

mark start as visited

while(s is not empty) {

next = s.pop()

for each node u adjacent to next

if(u is not marked)

mark u and push onto s

}

}

The depth first solution of FIGURE 1 will be

7-> 5-> 11-> 2-> 3-> 8-> 9-> 10

III. Generating All solutions

An algorithm to generate all possible solutions for a

topological sort was published by Donald Knuth

(1964)
[5]

. This algorithm is an extension of the

previous algorithm written by Knuth for interaction

between linked and sequential forms of data

representation. This algorithm uses a deque D which

acts as a counter array for the sort. Backtracking

methods are used for multiple traversals of the DAG.

Since the need for recursion arises in the algorithm, it

is made iterative by the use of a stack for storing

certain local variables.

IV. Dynamic Algorithm For Topological

sort

A new algorithm is introduced by Pearce D and Kelly

P
[1]

,where a new dynamic algorithm for topological

sorting is introduced and compared against other

algorithms for improved time complexity.

This algorithm uses both forward depth first search

and a backward depth first search from two edges and

sorts the elements accordingly into two lists. The two

lists are sorted separately in the topological order and

merged together. The algorithm checks for cycles in

the graph only during the forward depth first search.

The stated time complexity for the given algorithm is

ϴ((δxy log δxy) +<<δxy>>)

 CS560

CS560 Fall2012 3

PROPERTIES

Topological sort have certain properties that they

possess. These properties can be constrains on the

input of the topological sort or the properties of the

output. Properties of a topological sort are discussed

in this section.

I. Uniqueness property

The topological sort’s output is not a unique one.

Every topological sort can have multiple solutions

depending on the type of algorithm used for sorting.

The sort solution also depends on the way the

algorithm peruses through the graph, breadth first or

depth first sort.

Certain DAGs have exclusively one solution, if they

are a list.

II. Relation with partial orders

Topological sorting algorithms are also used in

mathematics to linearly order a partially ordered list.

A partially ordered set/list has elements which are

related to each other with an inequality relation. This

set/list is used as an input for the topological sort

algorithm and the out put produced is a total ordered

list which is ordered in either an ascending or

descending order of the elements.

Definition 3.1 An inequality is represented with ≥

symbol.

Definition 3.2 A Partial order contains elements of

the form, x ≥ y , z ≥ x. A total order is of the form z,

x, y which linearly orders the partial order.

III. Other properties

DAGs must have at least one vertex what does not

have any incoming edge. Topological sorts can be

only done on graphs that are acyclic. Edges on a

cyclic graph cannot be removed for linear ordering

because of cyclic edges between two or more

vertices.

In FIGURE 2, we notice that there is a cycle where

node 7 and node 11 are inter-dependent, and hence an

order cannot be determined. Hence an acyclic graph

is mandatory.

FIGURE 2

SAMPLE CYCLIC GRAPH FOR FIGURE 1

APPLICATIONS

Topological sorting can be used in a lot of different

scenarios that involve scheduling a number of tasks

which have some inter dependencies.

 While creating complex database tables,

some tables have interdependencies .

Topological sort can determine the order in

which we create them.

 Determining what order to take courses and

their pre-requisites in to complete a degree.

 Formulating a lesson plan for a course

 Tsort algorithm in UNIX rearranges source

files to define all the methods before they

are used in the file.

 It is used to detect cycles in a graph.

UNIX AND TOPOLOGICAL SORTING

UNIX uses topological sort as an inbuilt keyword.

This keyword allows the object files of the source to

be ordered sequentially so the linker can process

them in the same order.

One application of tsort in UNIX is to arrange and

declare all the functions in a program before they are

used.

Tsort uses a command line input to read the file name

and the option for what has to be done with the file
[6]

tsort [option] [file]

 CS560

CS560 Fall2012 4

CONCLUSION

Topological sort has been introduced in this paper.

The properties for the input of the topological sort,

i.e. a directed acyclic graph, are discussed. The

problem for topological sorting has been defined

along with the notations used in the paper. Different

algorithms have been explained using a sample

directed acyclic graph and the solutions have been

found.

REFERENCES

[1] Pearce D, Kelly P , A Dynamic Topological Sort Algorithm

for Directed Acyclic Graphs

http://www.doc.ic.ac.uk/~phjk/Publications/DynamicTopoSor

tAlg-JEA-07.pdf

[2] Jianjun Z, Müller M, Depth-First Discovery Algorithm for

incremental topological sorting of directed acyclic graphs,,

Information Processing Letters 88 (2003) 195–200

[3] Washington University CSE332 Course slides,

http://www.cs.washington.edu/education/courses/cse332/10s

p/lectures/lecture16.pdf

[4] University of Iowa, Data Structures course slides,

http://homepage.cs.uiowa.edu/~hzhang/c21/notes/18TopoSor

t.pdf

[5] A structures Program to generate All topological Sorting

Arrangements (1974), Donald Knuth, Jayme L. Szwarcfiter,

Literate Programming Donald Knuth (1992).

[6] UNIXHelp for Users, http://unixhelp.ed.ac.uk/

[7] Wikipedia, http://en.wikipedia.org/wiki/Topological_sorting

http://www.doc.ic.ac.uk/~phjk/Publications/DynamicTopoSortAlg-JEA-07.pdf
http://www.doc.ic.ac.uk/~phjk/Publications/DynamicTopoSortAlg-JEA-07.pdf
http://www.cs.washington.edu/education/courses/cse332/10sp/lectures/lecture16.pdf
http://www.cs.washington.edu/education/courses/cse332/10sp/lectures/lecture16.pdf
http://homepage.cs.uiowa.edu/~hzhang/c21/notes/18TopoSort.pdf
http://homepage.cs.uiowa.edu/~hzhang/c21/notes/18TopoSort.pdf
http://unixhelp.ed.ac.uk/
http://en.wikipedia.org/wiki/Topological_sorting

