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Abstract
Cascades are a network phenomenon in which
small local shocks can result in wide-spread
fads, strikes, innovations, or power failures.
Determining which initial shocks will result
in the largest cascades is of interest to mar-
keting, epidemiology, and computer network-
ing. This paper surveys work in maximizing
the size of cascades in social networks.

1. Introduction

In his 1903 opus entitled “The Laws of Imitation,” pio-
neering sociologist Gabriel Tarde set out “to learn why,
given one hundred different innovations conceived of
at the same time – innovations in the form of words,
in mythological ideas, in industrial processes, etc. –
ten will spread abroad, while ninety will be forgotten”
[11]. The optimist’s first answer is that a good innova-
tion will spread by its own merit. But, as is apparent
to anyone who has ever appreciated watching a movie
on Betamax or has witnessed the illogical outcomes of
rioting, merit is not the only catalyst of the spread
of an idea. Tarde attributes these irrational occur-
rences to “extra-logical influences,” resulting in situa-
tions where “the poorest innovations, from the point
of view of logic, are selected because of their place, or
even date of birth.”

Current research in social network analysis asserts that
these “extra-logical” influences can be explained by ex-
amining the dynamics of the network through which
influence is transmitted between individuals. In other
words, if we view individuals as nodes in a social net-
work, where a directed edge indicates that one node
influences another, then some graph configurations
make it more likely that an innovation will be widely
adopted. Moreover, in some graphs, if only a small
proportion of individuals adopt an innovation, the idea
will spread quickly to a large component of the graph.
This is the phenomenon of “global cascades” [12], also

known as “information cascades” [13], “diffusion of in-
novations” [10], or “spread of influence” [6].

Given such a system, a natural question emerges: If
we wish to maximize the size of a cascade, which sub-
set of nodes should we target? [3] Answers to this
question have applications in marketing, politics, eco-
nomics, epidemiology, and computer networking.

2. Modeling Cascades

2.1. Local Influence

Let G be a directed graph representing a social net-
work, where each node can be active (adopter of an
idea) or inactive, and a directed edge represents the
influence of one node upon another. Cascade models
attempt to explain how nodes become active. The un-
derlying assumption in all cascade models is that the
probability that a node v will become active increases
monotonically with the number of active neighbors of
v.

Sociologist Mark Granovetter [5] proposed that each
node v has a threshold such that if the fraction of v’s
neighbors that are active exceeds v’s threshold, then v
will become active. This model has been generalized
by [12] and others to the following Linear Threshold
Model: Let 0 ≤ θv ≤ 1 be the threshold of node v. Let
Av be the subset of nodes that are neighbors of v and
are active. For every node w ∈ Av, bw,v defines the
influence neighbor w has on v, where

∑
w∈Av

bw,v ≤ 1.
Then v becomes active if

∑
w∈Av

bw,v ≥ θv.

Thus, θv represents the tendency for v to be swayed by
the actions of its neighbors – in the language of Tarde,
the “coefficient of imitation” [11].

Kempe et al.[6] describe an alternate cascade model
called the Independent Cascade Model. Imagine sim-
ulating the spread of an innovation. At time t, let
node v become active. Then for each w that neighbors
v, let pv,w be the probability that v activates w. If



v succeeds, then w will be active for the duration of
the simulation. The model also specifies that v cannot
attempt to activate w at any other time step in the
simulation. The system is parameterized by pv,w, and
the assumption is that these probabilities are indepen-
dent of time.

2.2. Global Cascades

Both of these cascade models are undoubtedly over-
simplifications of the actual interactions occurring at
the local level, but the hope is that they will provide
insight into global phenomena. Specifically, global cas-
cades in the real world (e.g. power failures and stock
market crashes) possess two notable traits: (a) they
occur infrequently, and (b) when they do occur, they
affect a large portion of the network (by definition)
[12].

Watts examined cascades in random graphs using the
Linear Threshold Model [12]. He characterizes two
constraints on the emergence of global cascades. First,
when the network is sparsely connected, “the propaga-
tion of cascades is limited by the global connectivity of
the network.” In other words, even if θv is very small,
most innovations do not spread because nodes do not
interact enough to influence each other. On the other
hand, when the network is dense, θv is the limiting
factor. For a given θv, the more neighbors v has, the
less likely it is that v will become active.

3. Viral Marketing

Businesses strive to make advertising more cost effec-
tive by judiciously choosing which potential customers
to target. Recent developments in data mining have
allowed companies to identify likely consumers based
on demographic information [8]. This idea is extended
in [4] to consider the “lifetime value” of a customer.
Thus, decisions to target a customer are based not only
on how likely that customer is to purchase the product,
but also the expected revenue that customer will bring
the company over his entire life. Also, Chickering and
Heckerman differentiate potential customers based on
how they will respond to advertising. Some customers
will buy the product with no advertising (always-buy),
others will buy only if given a discount (persuadable),
and still others will buy only if they are not marketed
to (anti-persuadable) [2].

None of the above methods considers the network ef-
fects of a potential customer. Yet, as long ago as 1969,
Frank Bass modeled a customer’s initial purchase of
an invention (e.g. the refrigerator, air conditioner, or
lawn-mower) as a function of the number of previous

buyers [1]. To estimate the number of previous buyers,
he separates customers into two types, innovators and
imitators, where an imitator’s decision to purchase an
invention is highly influenced by the number of previ-
ous buyers.

Extending this to social networks, Krackhardt [7] con-
siders the local influence each customer exerts on her
neighbors. In what he calls the “friendship ripple ef-
fect,” a customer who receives a free trial of a prod-
uct coaxes her friends into purchasing the product.
But Krackhardt confines the ripple to friends one edge
away from the targeted customer.

Viral marketing ([3],[9]) generalizes Krackhardt’s
model by considering the entire network effect of tar-
geting a customer. Here, we look not only at the
number of friends a targeted customer will coax into
purchasing a product, but also at the friends of her
friends, and so on. Businesses must now consider two
factors when targeting a consumer: (1) How likely is
she to purchase a product (an intrinsic property), and
(2) how many additional people will she likely coax
into buying the product (a network property). In the
language of cascade models, which nodes should busi-
nesses attempt to activate to maximize the size of the
resulting cascade?

4. Maximizing Cascade Size

4.1. Case 1: General Threshold model

We follow the notation of Richardson and Domingos
to setup the problem [9]. For a set of n potential
customers, let Xi be a Boolean variable that is 1 if
customer i buys the product being marketed, and is
0 otherwise. Assume the product being sold has a
set of attributes Y = {Y1, . . . , Ym}. Let the neigh-
bors of Xi be those nodes that directly influence Xi,
which we denote Ni. Let Mi be a Boolean vari-
able that is 1 if we market to customer Xi, and is
0 otherwise. Previous research has ignored network
effects and simply targeted customers most likely to
purchase a product, as defined by P (Xi = 1|Y,Mi)
[8]. But, taking a customer’s network value into ac-
count, we instead model P (Xi = 1|Y,Mi,Ni). An
optimal marketing plan can be viewed as the solution
to argmax

M

∑
i P (Xi = 1|Y,Mi,Ni).

However, to maximize profits, we must also factor in
the cost of M. Let r0 be the revenue from selling a
product to a customer with no marketing, and r1 be
the revenue if marketing is used. (E.g. if marketing
includes giving the customer a discount, then r1 < r0.)
Let the constant c be the cost of marketing to any



customer. Also let f1
i (M) be the result of setting Mi

to 1 and leaving the rest of M unchanged, defined
similarly for f0

i (M). Then we can define the expected
lift in profit from marketing to customer i in isolation
as

ELP 1
i (Y,M) = r1P (Xi = 1|Y, f1

i (M),Ni)
−r0P (Xi = 1|Y, f0

i (M),Ni)− c

Domingos calls this a customer’s intrinsic value. If
we let M0 be a vector of zeros, then the global lift in
profit from marketing plan M is

ELP (Y,M) =
n∑

i=1

riP (Xi = 1|Y,M,Ni)

−r0

n∑
i=1

P (Xi = 1|Y,M0,Ni)

−|M|c

A customer’s total value is the ELP obtained by mar-
keting to her. Therefore, a customer’s network value
is the difference between her total and intrinsic values.

We wish to find an assignment of M that maximizes
ELP . Consider a simulation of the network. Let A
be the initial set of active nodes, and define σ(A) to
be the set of active nodes at the end of simulation.
If we temporarily ignore discounts (i.e. r0 = r1), the
problem of maximizing ELP for a given marketing
budget of size c|A| is equivalent to finding the set of
nodes of size |A| that maximizes σ(A), i.e. for a fixed
size A, find argmax

A
σ(A) [6].

First, however, it is important to note that the model
defined above is more general than the Linear Thresh-
old model defined in section 2. Here, we simply condi-
tion Xi on Ni, but we do not place linear constraints
on the relationship between Xi and Ni. Thus, we
have assumed that Xi’s decision to become active is
based on some monotonic threshold function f(Ni)
that is a mapping from Ni to a real number in [0,1].
The Linear Threshold model is a special case where
f(Ni) =

∑
Xj∈Ni

bj,iXj , and
∑

Xj∈Ni
bj,i ≤ 1.

Kempe et al. show that it is NP-hard to approxi-
mate the influence maximization problem under the
General Threshold model to within a factor of n1−ε,
for any ε > 0 [6]. Despite this limitation, Domingos
and Richardson achieve reasonable results by perform-
ing the following greedy hill-climbing algorithm to find
the optimal M: while there exists a marketing action
that increases ELP , set Mj = 1, where marketing to
customer j maximizes ELP .

4.2. Case 2: Linear Threshold model

Realizing the intractability of the General Threshold
model, Richardson and Domingos reformulated the
cascade maximization problem in terms of the Lin-
ear Threshold model. Here, we simplify by letting
P (Xi|Y,Mi,Ni) =

βiP0(Xi|Y,Mi) + (1− βi)PN (Xi|Y,M,Ni)

where

PN (Xi = 1|Y,M,Ni) =
∑

Xj∈Ni

bj,iXj

Here, 0 ≤ βi ≤ 1 measures how “self-reliant” Xi is,
P0 is Xi’s internal probability of buying the product,
and PN defines the influence of Xi’s neighbors on his
decision [9].

With this simplification, the optimal setting of M can
be found analytically by solving a system of linear
equations [9].

4.3. Case 3: Triggering Model

Kempe et al. specify a model that is more general
than the Linear Threshold model but less general than
the General Threshold model [6]. In the Triggering
Model, each node Xi independently chooses a random
“triggering set” Ti according to some distribution over
Ni. At the start of simulation, set A is targeted for
initial activation. At each step, Xi is set to 1 if there
exists an Xj ∈ Ti such that Xj = 1.

We can think of Ti as defining “live” and “blocked”
edges. Edge (i, j) is live if Xj ∈ Ti, and is blocked
otherwise. Finding σ(A) is therefore equivalent to the
graph reachability problem over live edges. The set of
nodes activated by A is the set of all nodes reachable
from nodes in A using “live” edges. By iteratively
simulating this process, we can estimate σ(A) for a
given M. Under this model, it can be shown that a
greedy hill-climbing algorithm for setting M is within
63% of optimal [6].

5. Extensions and Future Work

Richardson and Domingos extend their models by let-
ting M be a continuous variable, so that businesses
can allocate marketing funds more effectively [9]. We
can also extend the simulations to the non-progressive
case, in which nodes can go from active to inactive as
well as vice versa. Kempe et al. have shown the pro-
gressive case to be equivalent to the non-progressive
case [6].



Future work could include examining (1) the effects
of network evolution on cascades, (2) the implica-
tions of allowing marketing interventions at different
time steps, and (3) the impact of adversarial markets
(where a competitor’s marketing strategy must be con-
sidered).
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