
Dependency Tree Kernels for Relation Extraction

Aron Culotta
University of Massachusetts

Amherst, MA 01002
culotta@cs.umass.edu

Jeffrey Sorensen
IBM T.J. Watson Research Center

Yorktown Heights, NY
sorenj@us.ibm.com

Abstract

We extend previous work on tree kernels
to estimate the similarity between the
dependency trees of sentences. Using
this kernel within a Support Vector Ma-
chine, we detect and classify relations
between entities in the Automatic Con-
tent Extraction (ACE) corpus of news
articles. We examine the utility of dif-
ferent features such as Wordnet hyper-
nyms, parts of speech, and entity types,
and find that the dependency tree kernel
achieves a 20% F1 improvement over a
“bag-of-words” kernel.

1 Introduction

The ability to detect complex patterns in data is
limited by the complexity of the data’s represen-
tation. In the case of text, a more structured data
source (e.g. a relational database) allows richer
queries than does an unstructured data source (e.g.
a collection of news articles). For example, current
web search engines would not perform well on the
query, “list all California-based CEOs who have
social ties with a United States Senator.” Only
a structured representation of the data can effec-
tively provide such a list.

The goal of Information Extraction (IE) is to
discover relevant segments of information in a
data stream that will be useful for structuring the
data. In the case of text, this usually amounts to
finding mentions of interesting entities and the re-
lations that join them, transforming a large corpus

Entity Type Location
Apple Organization Cupertino, CA

Microsoft Organization Redmond, WA

Table 1: An example of extracted fields

of unstructured text into a relational database with
entries such as those in Table 1.

IE is commonly viewed as a three stage pro-
cess: first, an entity tagger detects all mentions
of interest; second, coreference resolution resolves
disparate mentions of the same entity; third, a re-
lation extractor finds relations between these enti-
ties. Entity tagging has been thoroughly addressed
by many statistical machine learning techniques,
obtaining greater than 90% F1 on many datasets
(Tjong Kim Sang and De Meulder, 2003). Coref-
erence resolution is an active area of research not
investigated here (Pasula et al., 2002; McCallum
and Wellner, 2003).

We describe a relation extraction technique
based on kernel methods. Kernel methods are
non-parametric density estimation techniques that
compute a kernel function between data instances,
where a kernel function can be thought of as a
similarity measure. Given a set of labeled in-
stances, kernel methods determine the label of a
novel instance by comparing it to the labeled train-
ing instances using this kernel function. Near-
est neighbor classification and support-vector ma-
chines (SVMs) are two popular examples of ker-
nel methods (Fukunaga, 1990; Cortes and Vapnik,
1995).

An advantage of kernel methods is that they

AT NEAR PART ROLE SOCIAL
Based-In Relative-location Part-of Affiliate, Founder Associate, Grandparent
Located Subsidiary Citizen-of, Management Parent, Sibling

Residence Other Client, Member Spouse, Other-professional
Owner, Other, Staff Other-relative, Other-personal

Table 2: Relation types and subtypes.

can search a feature space much larger than could
be represented by a feature extraction-based ap-
proach. This is possible because the kernel func-
tion can explore an implicit feature space when
calculating the similarity between two instances,
as described in the Section 3.

Working in such a large feature space can lead
to over-fitting in many machine learning algo-
rithms. To address this problem, we apply SVMs
to the task of relation exraction. SVMs find a
boundary between instances of different classes
such that the distance between the boundary and
the nearest instances is maximized. This charac-
teristic, in addition to empirical vaidation, indi-
cates that SVMs are particularly robust to over-
fitting.

Here we are interested in detecting and clas-
sifying instances of relations, where a relation is
some meaningful connection between two entities
(Table 2). We represent each relation instance as
an augmented dependecy tree. A dependency tree
represents the grammatical dependencies in a sen-
tence; we augment this tree with features for each
node (e.g. part of speech) We choose this repre-
sentation because we hypothesize that instances
containing similar relations will share similar sub-
structures in their dependency trees. The task of
the kernel function is to find these similarities.

We define a tree kernel over dependency trees
and incorporate this kernel within an SVM to ex-
tract relations from newswire documents. The
tree kernel approach consistently outperforms the
bag-of-words kernel, suggesting that this highly-
structured representation of sentences is more in-
formative for detecting and distinguishing rela-
tions.

2 Related Work

Kernel methods (Vapnik, 1998; Cristianini and
Shawe-Taylor, 2000) have become increasingly
popular because of their ability to map ar-

bitrary objects to a Euclidian feature space.
Haussler (1999) describes a framework for cal-
culating kernels over discrete structures such as
strings and trees. String kernels for text classifi-
cation are explored in Lodhi et al. (2000), and tree
kernel variants are described in (Zelenko et al.,
2003; Collins and Duffy, 2002; Cumby and Roth,
2003). Our algorithm is similar to that described
by Zelenko et al. (2003). Our contributions are
a richer sentence representation, a more general
framework to allow feature weighting, as well as
the use of composite kernels to reduce kernel spar-
sity.

Brin (1998) and Agichtein and Gravano (2000)
apply pattern matching and wrapper techniques
for relation extraction, but these approaches
do not scale well to fastly evolving corpora.
Miller et al. (2000) propose an integrated statisti-
cal parsing technique that augments parse trees
with semantic labels denoting entity and relation
types. Whereas Miller et al. (2000) use a genera-
tive model to produce parse information as well
as relation information, we hypothesize that a
technique discriminatively trained to classify re-
lations will achieve better performance. Also,
Roth and Yih (2002) learn a Bayesian network to
tag entities and their relations simultaneously. We
experiment with a more challenging set of relation
types and a larger corpus.

3 Kernel Methods

In traditional machine learning, we are provided
a set of training instances

� � �������	�	�
����
,

where each instance
���

is represented by some � -
dimensional feature vector. Much time is spent on
the task of feature engineering – searching for the
optimal feature set either manually by consulting
domain experts or automatically through feature
induction and selection (Scott and Matwin, 1999).
For example, in entity detection the original in-
stance representation is generally a word vector

corresponding to a sentence. Feature extraction
and induction may result in features such as part-
of-speech, word n-grams, character n-grams, cap-
italization, and conjunctions of these features. In
the case of more structured objects, such as parse
trees, features may include some description of the
object’s structure, such as “has an NP-VP subtree.”
Kernel methods can be particularly effective at re-
ducing the feature engineering burden for struc-
tured objects. By calculating the similarity be-
tween two objects, kernel methods can employ dy-
namic programming solutions to efficiently enu-
merate over substructures that would be too costly
to explicitly include as features.

Formally, a kernel function � is a mapping
���������	�
 ������ from instance space � to
a similarity score ��� � ����� ��� ��� � � � � � � ����� �
� � � ��� � ����� . Here,

� � � � � is some feature func-
tion over the instance

�
. The kernel function must

be symmetric
 ��� � ����� � ������� � ��� and positive-
semidefinite. By positive-semidefinite, we require
that the if

� � � �	�	� � �! #" � , then the $%�#$ matrix&
defined by

& �(' � ��� � � � �)' � is positive semi-
definite. It has been shown that any function that
takes the dot product of feature vectors is a kernel
function (Haussler, 1999).

A simple kernel function takes the dot prod-
uct of the vector representation of instances be-
ing compared. For example, in document classi-
fication, each document can be represented by a
binary vector, where each element corresponds to
the presence or absence of a particular word in that
document. Here,

� � � � � �+*
if word , occurs in

document
�

. Thus, the kernel function ��� � ���!�
returns the number of words in common between�

and � . We refer to this kernel as the “bag-of-
words” kernel, since it ignores word order.

When instances are more structured, as in the
case of dependency trees, more complex kernels
become necessary. Haussler (1999) describes con-
volution kernels, which find the similarity between
two structures by summing the similarity of their
substructures. As an example, consider a kernel
over strings. To determine the similarity between
two strings, string kernels (Lodhi et al., 2000)
count the number of common subsequences in the
two strings, and weight these matches by their
length. Thus,

� � � � � is the number of times string

Troops

Tikrit

advanced

near
t

t

t

t
0

1 2

3

Figure 1: A dependency tree for the sentence
Toops advanced near Tikrit.

�
contains the subsequence referenced by , . These

matches can be found efficiently through a dy-
namic program, allowing string kernels examine
long-range features that would be computationally
infeasible in a feature-based method.

Given a training set
� � ��� ���	�	� � �

, kernel
methods compute the Gram matrix

&
such that& �(' � ��� � � � �)' � . Given

&
, the classifier finds a

hyperplane which separates instances of different
classes. To classify an unseen instance

�
, the clas-

sifier first projects
�

into the feature space defined
by the kernel function. Classification then consists
of determining on which side of the separating hy-
perplane

�
lies.

A support vector machine (SVM) is a type
of classifier that formulates the task of finding
the separating hyperplane as the solution to a
quadratic programming problem (Cristianini and
Shawe-Taylor, 2000). Support vector machines at-
tempt to find a hyperplane that not only separates
the classes but also maximizes the margin between
them. The hope is that this will lead to better gen-
eralized performance on unseen instances.

4 Augmented Dependency Trees

Our task is to detect and classify relations between
entities in text. We assume that entity tagging
has been performed; so to generate potential rela-
tion instances, we iterate over all pairs of entities
occurring in the same sentence. For each entity
pair, we create a dependency tree (described be-

Feature Example
word troops, Tikrit

part-of-speech (24 values) NN, NNP
general-pos (5 values) noun, verb, adj

chunk-tag NP, VP, ADJP
entity-type person, geo-political-entity
entity-level name, nominal, pronoun

Wordnet hypernyms social group, city
relation-argument ARG A, ARG B

Table 3: List of features assigned to each node in
the dependency tree.

low) representing this instance. Given a labeled
training set of potential relations, we define a tree
kernel over dependency trees which we then use in
an SVM to classify test instances.

A dependency tree is a representation that de-
notes grammatical relations between words in a
sentence (Figure 1). A set of rules maps a parse
tree to a dependency tree. For example, subjects
are dependent on their verbs and adjectives are de-
pendent on the nouns they modify. Note that for
the purposes of this paper, we do not consider the
link labels (e.g. “object”, “subject”); instead we
use only the dependency structure. To generate the
parse tree of each sentence, we use MXPOST, a
maximum entropy statistical parser1; we then con-
vert this parse tree to a dependency tree. Note that
the left-to-right ordering of the sentence is main-
tained in the dependency tree only among siblings
(i.e. the dependency tree does not specify an or-
der to traverse the tree to recover the original sen-
tence).

For each pair of entities in a sentence, we find
the smallest common subtree in the dependency
tree that includes both entities. We choose to use
this subtree instead of the entire tree to reduce
noise and emphasize the local characteristics of re-
lations. We then represent each node of the tree as
a feature vector. For example, in addition to the
word itself, we include the features in Table 3. The
relation-argument feature specifies whether an en-
tity is the first or second argument in a relation.
This is required to learn asymmetric relations (e.g.
X OWNS Y).

Formally, a relation instance is a dependency
tree � with nodes

����� �	�	���
. We use

� �
to refer

1http://www.cis.upenn.edu/˜adwait/statnlp.html

both to a tree node and to the feature vector that
represents it,

� ��� ��� ���	�	���
	
. We refer to the � ���

child of node
� �

as
� �
 ��� , and we denote the set of

all children of node
� �

as
� �
 �� . We reference a sub-

set � of children of
� �

by
� �
 � � "�� �
 � . Finally, we

refer to the parent of node
� �

as
� � � �

.
From the example in Figure 1,

� �
 * � � ���
,� �
 �� * � � ��� � � ��� , and

� ��� � ��� �
.

5 Tree kernels for dependency trees

We now define a kernel function for dependency
trees. The tree kernel is a function ����� � ��� � � that
returns a normalized, symmetric similarity score
in the range ���� * � for two trees � � and � � . We
define a slightly more general version of the kernel
described by Zelenko et al. (2003).

We first define two functions over tree nodes: a
matching function ��� � � � ��' � " � �� * and a simi-
larity function � � � � � ��' � " ������ � . Let the feature
vector representing node

� � � ��� ���	�	����	
consist

of two possibly overlapping subsets
������ � �

and���� � � �
. We use

����
in the matching function and����

in the similarity function. We define

��� � � � � ' � ��� * if
���� �����'

� otherwise

and � � � � � � ' � �! "�#%$�&(') "�*+$�&(',.- � �
/ � ��0 �
where - � � / � � 0 � is some compatibility function

between two feature values. For example, in the
simplest case where

- � � / � � 0 � ��� * if
� / ��� 0

� otherwise� � � � � � ' � returns the number of feature values in
common between nodes

����
,
���'

.
We can think of the distinction between func-

tions ��� � � � ��' � and � � � � � ��' � as a way to discretize
the similarity between two nodes. If none of the
features in

� ��
match, then we declare the two

nodes completely dissimilar. If
����

does match� �'
, then we proceed to compute the similarity� � � � � � ' � . Thus, restricting nodes by ��� � � � ��' � is

a way to prune the search space of matching sub-
trees, as shown below.

For two dependency trees � � , � � , with root
nodes � � and � � , we define the tree kernel
����� � ��� � � as follows:

����� � ��� � � �
��� �� � if ����� � ��� � � � �� ��� � ��� � ���

�
	 ��� �
 �� ��� �
 ���� otherwise

where �
	 is a kernel function over children. Let� and � be sequences of indices such that � is a
sequence ��� ��� �	�	��� , and likewise for � .
Let ��� � � � �� � � * and � � � � be the length of� . Then we have � 	 � � �
 �� � � '
 ���� �

 ��� ��� �������! "���#�$�&%
	 ����� % 	 �'�$� ��� � �
 � � � ��'
 �����

The constant �)(% (*
is a decay fac-

tor that penalizes matching subsequences that
are spread out within the child sequences. See
Zelenko et al. (2003) for a proof that � is kernel
function.

Intuitively, whenever we find a pair of matching
nodes, we search for all matching subsequences
of the children of each node. A matching subse-
quence of children is a sequence of children � and� such that ���� � �+* � � � * �-, ,.($ � . For each
matching pair of nodes �� � �+* � � in a matching sub-
sequence, we accumulate the result of the similar-
ity function � �� � �+* ' � and then recursively search
for matching subsequences of their children �
 �� ,* '
 �� .

We implement two types of tree kernels. A
contiguous kernel only matches children subse-
quences that are uninterrupted by non-matching
nodes. Therefore, ��� � � � � � � � . A sparse tree
kernel, by contrast, allows non-matching nodes
within matching subsequences.

Figure 2 shows two relation instances, where
each node contains the original text plus the
features used for the matching function,

� �� �
�
general-pos, entity-type, relation-argument

.

(“NA” denotes the feature is not present for this
node.) The contiguous kernel matches the follow-
ing substructures:

��� �
 � � ��/ �
 � � , ��� �
10 � ��/ �
 * � ,���32
 � � ��/ �
 � � . Because the sparse kernel allows
non-matching nodes, it matches an additional sub-
structure

� �����
 ��54 �+0 � ��/ �
 ��54 � * � , where (4) indi-
cates an arbitrary number of non-matching nodes.

person
noun

NA
NA
verb

ARG_B
geo−political

1

0

troops

advanced

noun
Tikrit

ARG_A

person
noun
forces

NA
NA
verb
moved

NA
NA
prep

toward

ARG_B

t

t

t t

t

1

0

2 3

4

geo−political
noun
Baghdad

quickly
adverb
NA
NA

ARG_A

near
prep
NA
NA

2

3

u

u

u

u

Figure 2: Two instances of the NEAR relation.

Zelenko has shown the contiguous kernel to be
computable in 6 � � $ � and the sparse kernel in6 � � $ 2 � , where � and $ are the number of chil-
dren in trees � � and � � respectively.

6 Experiments

We extract relations from the Automatic Con-
tent Extraction (ACE) corpus provided by the
National Institute for Standards and Technol-
ogy (NIST). The data consists of about 800
annotated text documents gathered from vari-
ous newspapers and broadcasts. Five entities
have been annotated (PERSON, ORGANIZATION,
GEO-POLITICAL ENTITY, LOCATION, FACIL-
ITY), along with 24 types of relations (Table 2). As
noted from the distribution of relationship types in
the training data (Figure 3), data imbalance and
sparsity are potential problems.

In addition to the contiguous and sparse tree
kernels, we also implement a bag-of-words ker-

nel, which treats the tree as a vector of features
over nodes, disregarding any structural informa-
tion. We also create composite kernels by com-
bining the sparse and contiguous kernels with the
bag-of-words kernel. Joachims et al. (2001) have
shown that given two kernels � � , � � , the compos-
ite kernel � ��� � � � � � ' � � � � � � � � �)' �"��� � � � � � � ' �
is also a kernel. We find that this composite kernel
improves performance when the Gram matrix

&
is

sparse (i.e. our instances are far apart in the kernel
space).

The features used to represent each node are
shown in Table 3. After initial experimentation,
the set of features we use in the matching func-
tion is

���� � �
general-pos, entity-type, relation-

argument

, and the similarity function examines

the remaining features.
In our experiments we tested the following five

kernels:

� � �
sparse kernel

� � �
contiguous kernel

� � �
bag-of-words kernel

� 2 � � � ��� �
��� � � � ��� �

We also experimented with the function

- � � / � � 0 � , the compatibility function between two
feature values. For example, we can increase the
importance of two nodes having the same Wordnet
hypernym2. If

� /
,
� 0

are hypernym features, then
we can define

- � � / � � 0 � ����� if
�
/ � �
0

� otherwise

When ���
*
, we increase the similarity of

nodes having the same hypernym. We tested a
number of weighting schemes, but did not obtain
a set of weights that produced consistent signif-
icant improvements. See Section 8 for alternate
approaches to setting - .

Table 4 shows the results of each kernel within
an SVM. (We augment the LibSVM3 implementa-
tion to include our dependency tree kernel.) Note

2http://www.cogsci.princeton.edu/˜wn/
3http://www.csie.ntu.edu.tw/˜cjlin/libsvm/

Figure 3: Distribution over relation types in train-
ing data.

that, although training was done over all 24 rela-
tion subtypes, we evaluate only over the 5 high-
level relation types. Thus, classifying a RESI-
DENCE relation as a LOCATED relation is deemed
correct4 . Note also that � � is not included Ta-
ble 4 because of burdensome computational time.
While precision is adequate, recall is low. This is
a result of the aforementioned class imbalance –
very few of the training examples are relations, so
the classifier is less likely to identify a testing in-
stances as a relation. Because we treat every pair
of mentions in a sentence as a possible relation,
our training set contains fewer than 15% positive
relation instances.

To remedy this, we retrain each SVMs for a bi-
nary classification task. Here, we detect, but do
not classify, relations. This allows us to combine
all positive relation instances into one class, which
provides us more training samples to estimate the
class boundary. We then threshold our output to

4This is to compensate for the small amount of training
data for many classes.

Avg. Prec. Avg. Rec. Avg. F1
� � 69.6 25.3 36.8
� � 47.0 10.0 14.2
� 2

68.9 24.3 35.5
� � 70.3 26.3 38.0

Table 4: Kernel performance comparison.

Prec. Rec. F1
� � – – –

� � (B) 83.4 45.5 58.8
� � 91.4 37.1 52.8

� � (B) 84.7 49.3 62.3
� � 92.7 10.6 19.0

� � (B) 72.5 40.2 51.7
� 2

91.3 35.1 50.8
� 2

(B) 80.1 49.9 61.5
� � 91.8 37.5 53.3

� � (B) 81.2 51.8 63.2

Table 5: Relation detection performance. (B) de-
notes binary classification.

achieve an optimal operating point. As seen in
Table 5, this method of relation detection outper-
forms that of the multi-class classifier.

We then use these binary classifiers in a cascad-
ing scheme as follows: First, we use a classifier
to detect possible relations. Then, we use a clas-
sifier trained only on positive relation instances to
classify each predicted relation. These results are
shown in Table 6.

The first result of interest is that the sparse tree
kernel, � � , does not perform as well as the con-
tiguous tree kernel, � � . Suspecting that noise was
introduced by the non-matching nodes allowed in
the sparse tree kernel, we performed the exper-
iment with different values for the decay factor

% � � ��� � ��� � � * , but obtained no improvement.

The second result of interest is that all tree
kernels outperform the bag-of-words kernel, � � ,
most noticeably in recall performance, implying
that the structural information the tree kernel pro-
vides is extremely useful for relation extraction.

D C Avg. Prec. Avg. Rec. Avg. F1
� � � � 66.0 29.0 40.1
� � � � 66.6 32.4 43.5
� � � � 62.5 27.7 38.1
� 2 � 2

67.5 34.3 45.3
� � � � 67.1 35.0 45.8
� � � � 67.4 33.9 45.0
� � � � 65.3 32.5 43.3

Table 6: Results on the cascading classification. D
and C denote the kernel used for relation detection
and classification, respectively.

7 Conclusions

We have shown that using a dependency tree ker-
nel for relation extraction provides a vast improve-
ment over a bag-of-words kernel. While the de-
pendency tree kernel appears to perform well at
the task of classifying relations, recall is still rela-
tively low. Detecting relations is a difficult task
for a kernel method because the set of all non-
relation instances is extremely heterogeneous, and
is therefore difficult to characterize with a similar-
ity metric. An improved system might use a differ-
ent method to detect candidate relations and then
use this kernel method to classify the relations.

8 Future Work

The most immediate extension is to automatically
learn the feature compatibility function - � � / � � 0 � .A first approach might use tf-idf to weight each
feature. Another approach might be to calculate
the information gain for each feature and use that
as its weight. A more complex system might learn
a weight for each pair of features; however this
seems computationally infeasible for large num-
bers of features.

One could also perform latent semantic index-
ing to collapse feature values into similar “cate-
gories” — for example, the words “football” and
“baseball” might fall into the same category. Here,

- � � / � � 0 � might return �
�

if
� / � � 0

, and �
�

if
� /

and
� 0

are in the same category, where �
�
� �

�
�

� . Any method which provides a “soft” match be-
tween feature values will sharpen the granularity
of the kernel and enhance its modeling power.

References

Eugene Agichtein and Luis Gravano. 2000. Snow-
ball: Extracting relations from large plain-text col-
lections. In Proceedings of the Fifth ACM Interna-
tional Conference on Digital Libraries.

Sergey Brin. 1998. Extracting patterns and rela-
tions from the world wide web. In WebDB Work-
shop at 6th International Conference on Extending
Database Technology, EDBT’98.

M. Collins and N. Duffy. 2002. Convolution kernels
for natural language. In T. G. Dietterich, S. Becker,
and Z. Ghahramani, editors, Advances in Neural In-
formation Processing Systems 14, Cambridge, MA.
MIT Press.

Corinna Cortes and Vladimir Vapnik. 1995. Support-
vector networks. Machine Learning, 20(3):273–
297.

N. Cristianini and J. Shawe-Taylor. 2000. An introduc-
tion to support vector machines. Cambridge Univer-
sity Press.

Chad M. Cumby and Dan Roth. 2003. On kernel
methods for relational learning. In Tom Fawcett
and Nina Mishra, editors, Machine Learning, Pro-
ceedings of the Twentieth International Conference
(ICML 2003), August 21-24, 2003, Washington, DC,
USA. AAAI Press.

K. Fukunaga. 1990. Introduction to Statistical Pattern
Recognition. Academic Press, second edition.

D. Haussler. 1999. Convolution kernels on discrete
structures. Technical Report UCS-CRL-99-10, Uni-
versity of California, Santa Cruz.

Thorsten Joachims, Nello Cristianini, and John Shawe-
Taylor. 2001. Composite kernels for hypertext cat-
egorisation. In Carla Brodley and Andrea Danyluk,
editors, Proceedings of ICML-01, 18th International
Conference on Machine Learning, pages 250–257,
Williams College, US. Morgan Kaufmann Publish-
ers, San Francisco, US.

Huma Lodhi, John Shawe-Taylor, Nello Cristianini,
and Christopher J. C. H. Watkins. 2000. Text clas-
sification using string kernels. In NIPS, pages 563–
569.

A. McCallum and B. Wellner. 2003. Toward condi-
tional models of identity uncertainty with applica-
tion to proper noun coreference. In IJCAI Workshop
on Information Integration on the Web.

S. Miller, H. Fox, L. Ramshaw, and R. Weischedel.
2000. A novel use of statistical parsing to extract
information from text. In 6th Applied Natural Lan-
guage Processing Conference.

H. Pasula, B. Marthi, B. Milch, S. Russell, and I. Sh-
pitser. 2002. Identity uncertainty and citation
matching.

Dan Roth and Wen-tau Yih. 2002. Probabilistic
reasoning for entity and relation recognition. In
19th International Conference on Computational
Linguistics.

Sam Scott and Stan Matwin. 1999. Feature engi-
neering for text classification. In Proceedings of
ICML-99, 16th International Conference on Ma-
chine Learning.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Walter Daelemans and Miles Osborne, editors, Pro-
ceedings of CoNLL-2003, pages 142–147. Edmon-
ton, Canada.

Vladimir Vapnik. 1998. Statistical Learning Theory.
Whiley, Chichester, GB.

D. Zelenko, C. Aone, and A. Richardella. 2003. Ker-
nel methods for relation extraction. Journal of Ma-
chine Learning Research, pages 1083–1106.

