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Abstract

Understanding the demographics of users of online social networks has important ap-
plications for health, marketing, and public messaging. Whereas most prior approaches
rely on a supervised learning approach, in which individual users are labeled with demo-
graphics for training, we instead create a distantly labeled dataset by collecting audience
measurement data for 1,500 websites (e.g., 50% of visitors to gizmodo.com are estimated
to have a bachelor’s degree). We then fit a regression model to predict these demographics
from information about the followers of each website on Twitter. Using patterns derived
both from textual content and the social network of each user, our final model produces an
average held-out correlation of .77 across seven different variables (age, gender, education,
ethnicity, income, parental status, and political preference). We then apply this model
to classify individual Twitter users by ethnicity, gender, and political preference, finding
performance that is surprisingly competitive with a fully supervised approach.

1. Introduction

Social media are increasingly being used to make inferences about the real world, with appli-
cation to politics (O’Connor, Balasubramanyan, Routledge, & Smith, 2010), health (Dredze,
2012), and marketing (Gopinath, Thomas, & Krishnamurthi, 2014). Understanding the de-
mographic makeup of a sample of social media users is critical to further progress in this
area, as it allows researchers to overcome the considerable selection bias in this uncontrolled
data. Additionally, this capability will help public messaging campaigns ensure that the
target demographic is being reached.

A common approach to demographic inference is supervised classification — from a
training set of annotated users, a model is fit to predict user attributes from the content of
their writings (Argamon, Dhawle, Koppel, & Pennebaker, 2005; Schler, Koppel, Argamon,
& Pennebaker, 2006; Rao, Yarowsky, Shreevats, & Gupta, 2010; Pennacchiotti & Popescu,
2011; Burger, Henderson, Kim, & Zarrella, 2011; Rao, Paul, Fink, Yarowsky, Oates, &
Coppersmith, 2011; Al Zamal, Liu, & Ruths, 2012). This approach has a number of limita-
tions: collecting human annotations is costly and error-prone; many demographic variables
of interest cannot easily be labeled by inspecting a profile (e.g., income, education level); by
restricting learning to a small set of labeled profiles, the generalizability of the classifier is

c©2016 AI Access Foundation. All rights reserved.



Culotta, Ravi, & Cutler

limited. Additionally, most past work has focused on text as the primary source of evidence,
making little use of network evidence.

In this paper, we fit regression models to predict seven demographic variables of Twitter
users (age, gender, education, ethnicity, income, parental status, and political preference)
based both on whom they follow and on the content of their tweets. Rather than using a
standard supervised approach, we construct a distantly labeled dataset consisting of web
traffic demographic data from Quantcast.com. By pairing web traffic demographics of a
site with the followers of that site on Twitter.com, we fit a regression model between a set
of Twitter users and their expected demographic profile. We then evaluate accuracy both
in recovering the Quantcast statistics as well as in classifying individual Twitter users. Our
experiments investigate several research questions:

RQ1. Can the demographics of a set of Twitter users be inferred from network
information alone? We find across seven demographic variables an average held-
out correlation of .73 between the web traffic demographics of a website and that
predicted by a regression model based on the site’s Twitter followers. We can learn,
for example, that high-income users are likely to follow The Economist and young
users are likely to follow PlayStation.

RQ2. Which is more revealing of demographics: social network features or lin-
guistic features? Overall, we find text-based features to be slightly more predictive
than social network features (.79 vs. .73), particularly for income and age variables.

RQ3. Can a regression model be extended to classify individual users? Using a
hand-labeled validation set of users annotated with gender, ethnicity, and political
preference, we find that a distantly trained regression model provides classification
accuracy competitive with a fully-supervised approach. Averaged across the three
classification tasks, both approaches obtain an F1 score of 81%.

RQ4. How much follower and linguistic information is needed for prediction?
We find that the identities of only 10 friends per user, chosen at random, is sufficient
to achieve 90% of the accuracy obtained using 200 friends. Accuracy using linguistic
features begins to plateau after 2,000 unique terms are observed per user.

In the remainder of the paper, we first review related work, then describe the data
collected from Twitter and QuantCast and the feature representation used for the task; next,
we present regression and classification results; finally, we conclude and outline directions
for future work.1

2. Related Work

Predicting attributes of social media users is a growing area of interest, with recent work
focusing on age (Schler et al., 2006; Rosenthal & McKeown, 2011; Nguyen, Smith, & Ros,
2011; Al Zamal et al., 2012), gender (Rao et al., 2010; Burger et al., 2011; Liu & Ruths,

1. Replication code and data are available here: https://github.com/tapilab/jair-2016-demographics.
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2013), race/ethnicity (Pennacchiotti & Popescu, 2011; Rao et al., 2011), personality (Arga-
mon et al., 2005; Schwartz, Eichstaedt, Kern, Dziurzynski, Ramones, Agrawal, Shah, Kosin-
ski, Stillwell, Seligman, et al., 2013), political affiliation (Conover, Goncalves, Ratkiewicz,
Flammini, & Menczer, 2011; Barberá, 2013; Volkova & Van Durme, 2015), and occupa-
tion (Preotiuc-Pietro, Lampos, & Aletras, 2015). Other work predicts demographics from
web browsing histories (Goel, Hofman, & Sirer, 2012). The majority of these approaches
rely on hand-annotated training data, require explicit self-identification by the user, or are
limited to very coarse attribute values (e.g., above or below 25-years-old).

Distantly supervised learning (also called lightly or weakly supervised learning) pro-
vides an alternative to standard supervised learning — it relies less on individual annotated
examples, instead bootstrapping models from declarative constraints. Previous work has
developed methods to train classifiers from prior knowledge of label proportions (Jin & Liu,
2005; Musicant, Christensen, & Olson, 2007; Quadrianto, Petterson, & Smola, 2009a; Liang,
Jordan, & Klein, 2009; Ganchev, Graca, Gillenwater, & Taskar, 2010; Mann & McCallum,
2010; Zhu, Chen, & Xing, 2014) or prior knowledge of features-label associations (Schapire,
Rochery, Rahim, & Gupta, 2002; Druck, Mann, & McCallum, 2008; Melville, Gryc, &
Lawrence, 2009). In addition to standard document categorization tasks, lightly super-
vised approaches have been applied to named-entity recognition (Mann & McCallum, 2010;
Ganchev & Das, 2013; Wang & Manning, 2014), dependency parsing (Druck, Mann, &
McCallum, 2009; Ganchev, Gillenwater, & Taskar, 2009), language identification (King &
Abney, 2013), and sentiment analysis (Melville et al., 2009).

Chang, Rosenn, Backstrom, and Marlow (2010) propose a related distantly supervised
approach to demographic inference, inferring user-level ethnicity using name/ethnicity dis-
tributions provided by the U.S. Census; however, that approach uses evidence from first and
last names, which are often not available, and thus are more appropriate for population-
level estimates. Oktay, Firat, and Ertem (2014) extend the work of Chang et al. (2010)
to also include statistics over first names. Rao et al. (2011) take a similar approach, also
including evidence from other linguistic features to infer gender and ethnicity of Facebook
users; they evaluate on the fine-grained ethnicity classes of Nigeria and use very limited
training data. More recently, Mohammady and Culotta (2014) trained an ethnicity model
for Twitter using county-level supervision, which, like our approach, uses a distant source
of supervision to build a model of individual demographics.

There have been several studies predicting population-level statistics from social media.
Eisenstein, Smith, and Xing (2011) use geolocated tweets to predict zip-code statistics of
race/ethnicity, income, and other variables using Census data; Schwartz et al. (2013) and
Culotta (2014) similarly predict county health statistics from Twitter. However, none of
this prior work attempts to predict or evaluate at the user level.

The primary methodological novelties of the present work are its use of web traffic data
as a form of weak supervision and its use of follower information as the primary source
of evidence. Additionally, this work considers a larger set of demographic variables than
prior work, and predicts a much more fine-grained set of categories (e.g., six different age
brackets instead of two or three used previously).

This paper extends our initial version of this work (Culotta, Kumar, & Cutler, 2015).
The novel contributions here include the following: (1) we have added an additional de-
mographic variable (political preference); (2) we have added an additional labeled dataset
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for evaluation (also for political preference); (3) whereas the initial version only used friend
features, here have introduced textual features from over 9M tweets; (4) we have included
a new analysis of how accuracy varies with the number of terms collected per user. We
have also reproduced our prior results using newly collected data from QuantCast.com;
since QuantCast demographic statistics have changed over time, the overall correlations
reported here deviate slightly from those reported in the original version, but the trends
and qualitative conclusions remain the same.

3. Data

In this section we describe the various data collected for our experiments.

3.1 Quantcast

Quantcast.com is an audience measurement company that tracks the demographics of vis-
itors to millions of websites. This is accomplished in part by using cookies to track the
browsing activity of a large panel of respondents (Kamerer, 2013). As of this writing, the
estimated demographics of a large number of websites is publicly accessible through their
searchable web interface.

We sampled 1,532 websites from Quantcast and downloaded statistics for seven demo-
graphic variables:

• Gender: Male, Female

• Age: 18-24, 25-34, 35-44, 45-54, 55-64, 65+

• Income: $0-50k, $50-100k, $100-150k, $150k+

• Education: No College, College, Grad School

• Children: Kids, No Kids

• Ethnicity: Caucasian, Hispanic, African American, Asian

• Political Preference: Democrat, Republican

For each variable, Quantcast reports the estimated percentage of visitors to a website with
a given demographic.

3.2 Twitter

For each website collected in the previous step, we executed a script to search for its Twitter
account, then manually verified it; 1,066 accounts from the original set of 1,532 were found.
An assumption of this work is that the demographic profiles of followers of a website on
Twitter are correlated with the demographic profiles of visitors to that website. While there
are undoubtedly biases introduced here (e.g., Twitter users may skew younger than the web
traffic panel), in aggregate these differences should have limited impact on the final model.

We represent each of the 1,066 Twitter accounts with feature vectors derived from
information about their followers. Below, we describe features based both on the social
network and on the linguistic content of each follower’s tweets.
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lifehacker*

h+p://www.lifehacker.com*
73%*Male*
19%*Graduate*School*
30%*$50A100k*
12%*Hispanic*

A* B*

C* D*

Neighbors*

2*/*2*=*1.0*

C* D*
lifehacker’s*Neighbor*Vector*

1*/*2*=*0.5*

Figure 1: Data model. We collect QuantCast demographic data for each website, then
construct a Neighbor Vector from the Twitter connections of that website,
based on the proportion of the website’s followers that are friends with each
neighbor.

3.2.1 Friend Features

Recall that Twitter users are allowed to “follow” other accounts, which introduces an asym-
metric relationship between users. If X follows Y , we say that Y is a friend of X (though
the reverse may not be true). For each account, we queried the Twitter REST API to sam-
ple 300 of its followers, using the followers/ids request. This sample is not necessarily
uniform. The Twitter API documentation states that “At this time, results are ordered
with the most recent following first — however, this ordering is subject to unannounced
change and eventual consistency issues.”

For each of these followers, we then collected up to 5,000 of the accounts they follow,
called friends, using the friends/ids API request. Thus, for each of the original accounts
from Quantcast, we have up to (300 ∗ 5K = 1.5M) additional accounts that are two hops
from the original account (the friend of a follower). We refer to these discovered accounts
as neighbors of the original Quantcast account. Of course, many of these accounts will be
duplicates, as two different followers will follow many of the same accounts (i.e., triadic
closure) — indeed, our core assumption is that the number of such duplicates represents
the strength of the similarity between the neighbors.
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Figure 2: Rank-order frequency plots of the number of neighbors per account and the num-
ber of links to all neighbors per account.

For each of the original accounts, we compute the fraction of its followers that are friends
with each of its neighbors and store this in a neighbor vector. Figure 1 shows an example.
Suppose a Quantcast account LifeHacker has two followers A and B; and that A follows
C, and B follows C and D. Then the neighbor vector for LifeHacker is {(C, 1), (D, .5)}.
This suggests that LifeHacker has a stronger relationship with C than D.2 For example, in
our data the top neighbors of LifeHacker are EA (the video game developer), GTASeries (a
video game fan site), and PlayStation.

The resulting dataset consists of 1.7M unique neighbors of the original 1,066 accounts.
To reduce dimensionality, we removed neighbors with fewer than 100 followers, leaving
46,649 unique neighbors with a total of 178M incoming links. Figure 2 plots the number of
unique neighbors per account as well as the number of neighbor links per account.

3.2.2 Text Features

In addition to the neighbor vector, we created an analogous vector based on the tweets of
the followers of each account. We collected the most recent 200 tweets for each of the 300
followers of each of the 1,066 accounts using the statuses/user timeline API request.

For each tweet, we perform standard tokenization, removing non-internal punctuation,
converting to lower case, and maintaining hashtag and mentions. URLs are collapsed to a
single feature type, as are digits (e.g., “12” is mapped to “99”; “123” is mapped to “999”).
Characters repeated more than twice are converted to a single occurrence. Terms used by
fewer than 20 different users are removed.

The resulting dataset consists of 9,427,489 tweets containing 112,642 unique terms writ-
ten by 59,431 users. For each of the original 1,066 accounts, we create a text vector similar
to the previous section. Each value represents the proportion of followers of the account
who use that term. E.g., xij = .1 indicates that 10% of the 300 followers of account i use
term j.

2. Note that we use friends of A rather than followers, since friend links are created by A and are thus more
likely to indicate A’s interests.
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4. Analysis

In this section, we report results predicting demographics both at the aggregate level (i.e.,
the demographics of an account’s followers) and at the user level (i.e., an individual Twitter
user’s demographic profile).

4.1 Regression

For each Quantcast site, we pair its demographic variables with its friend and text feature
vectors to construct a regression problem. Thus, we attempt to predict the demographic
profile of the followers of a Twitter account based on the friends of those followers and the
content of their tweets.

Due to the high dimensionality (46,649 friend features and 112,642 text features) and
small number of examples (1,066), we use elastic net regularization (Zou & Hastie, 2005),
which combines both L1 and L2 penalties. Furthermore, since each output variable consists
of dependent categories (e.g., age brackets), we use a multi-task variant of elastic net to
ensure that the same features are selected by the L1 regularizer for each category. We use
the implementation of MultiTaskElasticNet in scikit-learn (Pedregosa et al., 2011).

Recall that standard linear regression selects coefficients β to minimize the squared error
on a list of training instances {xi, yi}Ni=1, for feature vector xi and expected output yi.

β∗ ← argminβ
1

N

N∑
i=1

(yi − βTxi)
2

Lasso imposes an L1 regularizer on β, while ridge regression imposes an L2 regularizer
on β. Elastic net combines both penalties:

β∗ ← argminβ
1

N

N∑
i=1

(yi − βTxi)
2 + λ1||β||1 + λ2||β||22

where λ1 and λ2 control the strength of L1 and L2 regularizers, respectively. The L1
regularizer encourages sparsity (i.e., many 0 values in β), while the L2 regularizer prevents
β values from becoming too large.

Multi-task elastic net extends standard elastic net to groups of related regression prob-
lems (Obozinski & Taskar, 2006). E.g., in our case, we would like to account for the fact
that the regressions for “No College”, “College”, and “Grad School” are related; thus, we
would like the sparse solutions to be similar across tasks (that is, L1 should select the same
features for each task).

Let β(j) be the coefficients for task j, and let βk = (β
(1)
k . . . β

(M)
k )T be the vector of

coefficients formed by concatenating the coefficients for the kth feature across all M tasks.
Then multi-task elastic net objective enforces that similar features are selected across tasks:

β∗ ← argminβ

M∑
j=1

1

Nj

Nj∑
i=1

(y
(j)
i − β

(j)Tx
(j)
i )2 +

λ1

p∑
k=1

||βk||1 + λ2||β||22
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Figure 3: Scatter plots of the true demographic variables from Quantcast versus those pre-
dicted using elastic net regression fit to friend and text features from Twitter.
The predictions are computed using five fold cross-validation; each panel also
reports the held-out correlation coefficient (r).

where Nj is the number of instances for task j and p is the number of features.

We fit three versions of this model using three different feature sets: Friends, Text, and
Friends+Text. We tuned the regularization parameters on a held-out set of 200 accounts
for Gender prediction, setting the scikit-learn parameters l1 ratio=0.5 for each model,
alpha=1e−5 for the Friends model, and alpha=1e−2 for the Text and Friends+Text models.

4.1.1 Regression Results

We perform five-fold cross-validation and report the held-out correlation coefficient (r)
between the predicted and true demographic variables. Figure 3 displays the resulting
scatter plots for each of the 21 categories for 7 demographic variables.

We can see that overall the correlation is very strong: .77 on average, ranging from .61
for the 35-44 age bracket to .91 for Male. All of these correlation coefficients are significant
using a two-tailed t-test (p < 0.01), with a Bonferroni adjustment for the 21 comparisons.
These results indicate that the neighbor and text vectors provides a reliable signal of the
demographics of a group of Twitter users. To put this correlation value in context, as
an indirect comparison, Eisenstein et al. (2011) predict the ethnicity proportions by ZIP
Code using Twitter data and obtain a maximum correlation of .337 (though the data and
experimental setup differ considerably).
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Category Value Top Accounts

Gender Male AdamSchefter, SportsCenter, espn, mortreport, WIRED
Female TheEllenShow, Oprah, MarthaStewart, Pinterest, Etsy

Age 18-24 IGN, PlayStation, RockstarGames, Ubisoft, steam games
25-34 azizansari, lenadunham, mindykaling, WIRED
35-44 cnnbrk, BarackObama, AP, TMZ, espn
45-54 FoxNews, cnnbrk, AP, WSJ, CNN
55-64 FoxNews, cnnbrk, AP, ABC, WSJ
65+ FoxNews, AP, WSJ, cnnbrk, DRUDGE REPORT

Income $0-50k YouTube, PlayStation, IGN, RockstarGames, Drake
$50-100k AdamSchefter, cnnbrk, SportsCenter, espn, ErinAndrews
$100-150k WSJ, espn, AdamSchefter, SportsCenter, ErinAndrews
$150k+ WSJ, TheEconomist, Forbes, nytimes, business

Politics Democrat BarackObama, Oprah, NewYorker, UncleRUSH,
MichelleObama

Republican FoxNews, michellemalkin, seanhannity, megynkelly,
DRUDGE REPORT

Education No College YouTube, PlayStation, RockstarGames, Xbox, IGN
College StephenAtHome, WIRED, ConanOBrien, mashable

Grad School nytimes, WSJ, NewYorker, TheEconomist, washingtonpost

Children No Kids NewYorker, StephenAtHome, nytimes, maddow, pitchfork
Has Kids parenting, parentsmagazine, HuffPostParents,

TheEllenShow, thepioneerwoman

Ethnicity Caucasian jimmyfallon, FoxNews, blakeshelton, TheEllenShow,
TheOnion

Hispanic latimes, Lakers, ABC7, Dodgers, KTLA
Afr. Amer. KevinHart4real, Drake, Tip, iamdiddy, UncleRUSH

Asian TechCrunch, WIRED, BillGates, TheEconomist, SFGate

Table 1: Accounts with the highest estimated coefficients for each category.

To further examine these results, Table 1 displays the features with the 5 largest co-
efficients per class according to the regression model fit using only friend features. Many
results match common stereotypes: sports accounts are predictive of men (AdamShefter
and MortReport are ESPN reporters), video game accounts are predictive of younger users
(IGN is a video gaming media company), financial news accounts are predictive of greater
income, and parenting magazines are predictive of users who have children. There also
appear to be some geographic effects, as California-related accounts are highly weighted
for both Hispanic and Asian categories. There seems to be good city-level resolution —
Los Angeles accounts (latimes, Lakers) are more strongly correlated with Hispanic users,
whereas San Francisco accounts (SFGate, SFist, SFWeekly) are more strongly correlated
with Asian users. There does seem to be some selection bias, so one must use caution in
interpreting the results. For example, BillGates is predictive of Asian users, but this is in
part because California has many Asian-Americans and in part because California has a
very strong technology sector.
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Category Value Top Terms

Gender Male film, guy, gay, man, fuck, game, team, internet, review, guys
Female hair, her, omg, family, girl, she, girls, cute, beautiful, thinking

Age 18-24 d, haha, album, x, xd, :, actually, stream, wanna, im
25-34 super, dc, baby, definitely, nba, pregnancy, wedding, even,

entire, nyc
35-44 star, fans, kids, tv, bike, mind, store, awesome, screen, son
45-54 wow, vote, american, comes, ca, santa, county, boys, nice,

high
55-64 vote, golf, red, american, country, north, county, holiday,

smile, 99,999
65+ vote, golf, @foxnews, holiday, may, american, he, family,

north, national

Income $0-50k lol, games, @youtube, damn, black, ps9, side, d, community,
god

$50-100k great, seattle, he, performance, lose, usa, kansas, iphone,
wow, cold

$100-150k santa, flight, nice, looks, practice, congrats, bike, dc, retweet,
ride

$150k+ dc, nyc, market, @wsj, congrats, beach, san, york, ca, looks

Politics Democrat women, u, ain’t, nyc, equality, la, voice, seattle, dc, @nytimes
Republican @foxnews, christmas, #tcot, football, county, morning,

family, christians, country, obama’s

Education No College lol, games, put, @youtube, county, made, ps9, xbox, videos,
found

College our, you’re, seattle, photo, @mashable, la, apple, fashion,
probably, san

Grad School dc, @nytimes, market, which, review, excellent, boston, also,
congrats, @washingtonpost

Children No Kids care, street, gay, years, health, drink, dc, white, ht, album
Has Kids kids, school, child, family, kid, daughter, children, utah,

moms, parents

Ethnicity Caucasian christmas, fun, dog, country, st, could, luck, guy, florida, john
Hispanic la, los, san, el, angeles, california, ca, lol, l.a, lakers

Afr. Amer. black, lol, bout, ain’t, brown, lil, african, blessed, smh, atlanta
Asian chinese, la, sf, san, china, korea, india, bay, vs, hi

Table 2: Terms with the highest estimated coefficients for each category.

Additionally, Table 2 shows the top 10 terms for each category from the text-only model.
These text features follow many of the same trends as the friend features, perhaps with a
greater level of granularity. While most terms are self-evident, we highlight a few here:
“xd” is an emoticon for laughing used among young users, and is often separated by spaces
(thus the tokens “x” and “d” appearing separately in the 18-24 bracket); “smh” stands for
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Model Friends Text Friends + Text Average

multi-task elastic net .73 .79 .77 .76
elastic net .72 .78 .76 .75

ridge .62 .79 .78 .73

Table 3: Average held-out correlation across all demographic variables for three competing
regression models.

“shaking my head”, an expression of disbelief that is predictive of African American users;
“hi” is an abbreviation for the state of Hawaii, which has a large Asian population.

Finally, we compare multi-task elastic net with the single-task variant of elastic net
and ridge regression (with regularization parameters tuned as before). Table 3 shows that
the three methods mostly produce comparable accuracy, with the exception of the friends
features, in which ridge regression performs substantially worse than the others.

4.2 Classification

The regression results suggest that the proposed model can accurately characterize the
demographics of a group of Twitter accounts. In this section, we provide additional valida-
tion with manually annotated Twitter accounts to investigate whether the same model can
accurately predict the demographics of individual users.

4.2.1 Labeled Data

Many of the demographic variables are difficult to label at the individual level — e.g., in-
come or education level is rarely explicitly mentioned in either a profile or tweet. Indeed,
an advantage of the approach here is that aggregate statistics are more readily available for
many demographics of interest that are difficult to label at the individual level. For valida-
tion purposes, we focus on three variables that can fairly reliably be labeled for individuals:
gender, ethnicity, and political preference.

The gender and ethnicity data were originally collected by Mohammady and Culotta
(2014) as follows: First, we used the Twitter Streaming API to obtain a random sample of
users, filtered to the United States (using time zone and the place country code from the
profile). From six days’ worth of data (December 6-12, 2013), we sampled 1,000 profiles
at random and categorized them by analyzing the profile, tweets, and profile image for
each user. We categorized 770 Twitter profiles into one of four ethnicities (Asian, African
American, Hispanic, Caucasian). Those for which ethnicity could not be determined were
discarded (230/1,000; 23%).3 The category frequency is Asian (22), African American
(263), Hispanic (158), Caucasian (327). To estimate inter-annotator agreement, a second
annotator sampled and categorized 120 users. Among users for which both annotators
selected one of the four categories, 74/76 labels agreed (97%). There was some disagreement
over when the category could be determined: for 21/120 labels (17.5%), one annotator
indicated the category could not be determined, while the other selected a category. Gender

3. This introduces some bias towards accounts with identifiable ethnicity; we leave an investigation of this
for future work.
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Figure 4: Rank-order frequency plots of the number of friends per user and the number of
unique terms per user in each of the labeled datasets (gender, ethnicity, politics).
These friends and terms are restricted to one of the 46,649 accounts and 112,642
terms used in the regression experiments.

annotation was done automatically by comparing the first name provided in the user profile
with the U.S. Census list of names by gender (Census, 1990). Ambiguous names were
removed.

For each user, we collected up to 200 of their friends using the Twitter API. We removed
accounts that restricted access to friend information; we also removed the Asian users due to
the small sample size, leaving a total of 615 users. For classification, each user is represented
by the identity of their friends (up to 200). Only those friend accounts contained in the
46,649 accounts used for the regression experiments were retained. We additionally collected
up to 3,200 tweets from each user and constructed a binary term vector, using the same
tokenization as in the regression model.

The political preference data comes from Volkova, Coppersmith, and Van Durme (2014),
who in turn builds on the labeled data of Pennacchiotti and Popescu (2011) and Al Zamal
et al. (2012). Volkova (2014) provides a detailed description of the data. We use the
geo-centric portion of the data, which contains Twitter users from Maryland, Virginia, or
Delaware who report their political affiliation in their Twitter profile description (e.g., “I’m
a father, husband, Republican”). Note that our feature representation does not consider
tokens from the user profile. This contains 183 Republican users and 230 Democratic users.
(We do not consider related political datasets that were annotated based on whom the user
follows, as this may give an unfair advantage to the friend features.) Each user has up
to 5,000 friends and 200 tweets. Figure 4 shows the number of friends and the number of
unique terms per user for each dataset.
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Friends Text Friends + Text

distant full distant full distant full

Gender .75 .66 .86 .84 .87 .84
Ethnicity .60 .68 .86 .86 .81 .86
Politics .80 .83 .56 .73 .74 .73

Average .72 .72 .76 .81 .81 .81

Table 4: F1 results for Twitter user classification on manually annotated data. We con-
sider three different feature sets (Friends, Text, Friends+Text), as well as two
classification models: full is a fully-supervised logistic regression classifier fit to
manually labeled Twitter users; distant is our proposed distantly-supervised re-
gression model, fit only on QuantCast data, using no manually annotated Twitter
users. The largest values in each row are in bold.

4.2.2 Classification Models

As our model was initially trained for a regression task, we make a few modifications to
apply it to a classification task. We represent each user in the labeled data as a binary
vector of friend and text features, using the same tokenization as in the regression results.
For example, if a user follows accounts A and B, then the feature values are 1 for those
corresponding accounts; similarly, if the user mentions terms X and Y, then those feature
values are 1. To repurpose the regression model to perform classification, we must modify
the coefficients returned by regression. We first compute the z-score of each coefficient
with respect to the other coefficients for that category value. E.g., all coefficients for the
Male class are adjusted to have mean 0 and unit variance. This makes the coefficients
comparable across labels. To classify each user, we then compute the dot product between
the coefficients and the binary feature vector, selecting the class with maximum value.

The regression model fit on the combined Friend+Text feature set performed poorly in
initial classification experiments. Upon investigation, we determined that the coefficients
for the two types of feature tended to differ by an order of magnitude. Rather than use
this model directly, we instead adopted an ensemble approach by combining the outputs of
the two models trained separately on text and friend features. To classify a set of users, we
computed the feature-coefficient dot product separately for the text and friend models, then
computed the z-score of the resulting values by class label (e.g., all dot-products produced
by the text model for the Male class were standardized to have zero mean and unit variance).
This put the predicted values for each model in the same range. We finally summed the
outputs of both models and returned the class with the maximum value for each user.

We also compared with a fully-supervised baseline. We trained a logistic regression
classifier with L2 regularization, using the same feature representation as above. We perform
three-fold cross-validation to compare accuracy with the distantly supervised approach.

401



Culotta, Ravi, & Cutler

0.4

0.5

0.6

0.7

0.8

0.9

Gender

Friends Text Friends+Text

0.4

0.5

0.6

0.7

0.8

0.9

M
a
cr

o
 F

1

Ethnicity

10 20 30 40 50 60 70 80 90 100
0.4

0.5

0.6

0.7

0.8

0.9

Politics

10 20 30 40 50 60 70 80 90 100

% of labeled training data
10 20 30 40 50 60 70 80 90 100

distant supervision

full supervision

Figure 5: Twitter user classification results comparing a standard logistic regression clas-
sifier (full supervision), trained using cross-validation, versus the proposed
approach (distant supervision), which is fit solely on statistics from Quant-
cast, with no individually labeled data. Distant supervision is comparable to full
supervision, even after 100% of the available training data are provided.

4.2.3 Classification Results

Table 4 compares the F1 scores for our distantly supervised approach (distant) as well as
the fully supervised baseline (full). We report results using each of the three feature sets
for the three labeled datasets.

Overall, the distantly supervised approach is comparable to the fully supervised ap-
proach. For two of the three tasks, the F1 score of distant meets or exceeds full. For the
third task (politics), the best distant method is within 3% of the best full method (.80
vs .83). Averaging over all three tasks, the best distant method is indistinguishable from
the best full method (both produce F1 scores of 81%).

The primary result in which distant supervision performs poorly is political classification
using text features. We speculate that this is in part due to the small number of tweets per
user available in this dataset (at most 200 tweets per user). Additionally, the text features
used in the distantly supervised approach were collected several years after the tweets
contained in the political dataset. Given the rapid topical changes of political dialogue, it
is likely that many of the highly-weighted terms in the distant text model are less relevant
to this older data. The results do suggest that friend features may be less susceptible to
such data drift – the friend-based distant model performs much better than the text-based
model (.80 vs .56).

As the number of labeled data are relatively small (fewer than 1,000 users), we exam-
ined the accuracy of the fully supervised approach as the number of labeled data increase
(Figure 5). It appears that supervised classification accuracy has mostly plateaued on each
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Figure 6: Classification F1 scores of the distantly supervised approach as the number of
friends and number of unique terms collected per user increase (with standard
deviations computed over five random trials).

task (with a possible exception of the Friends+Text features for gender classification). For
ethnicity, distant outperforms full until over half of the labeled data is used to fit the
classification approach, after which full dominates. Thus, it appears that the distantly
supervised approach is comparable to fully supervised learning across a range of sizes of
labeled data.

4.2.4 Sensitivity to Number of Features

Finally, we investigate how much information we need about a user before we can make
an accurate prediction of their demographics. To do so, we perform an experiment in
which we randomly sample a subset of friends and terms for each user, and we report
F1 as the number of selected features increases. For friends, we consider subsets of size
{1, 3, 5, 10, 20, 30, 40, 50} (values greater than 50 did not significantly increase accuracy).
For terms, we consider subsets of size {10, 100, 1000, 2000, 8029} (8,029 is the maximum
number of unique terms used by any single user in the labeled data).

Figure 6 displays the results. We can see that accuracy plateaus quickly using friend
features: for all three tasks, the F1 score using only 10 friends is within 5% of the score using
all 200 friends. For text features, accuracy begins to plateau at around 2K unique terms
for the Gender and Ethnicity tasks. The lower accuracy using Text features for Politics is
likely due in part to the simple fact that the Politics data have fewer tweets per user (a
maximum of 200 tweets per user, compared to up to 3,200 for the Gender and Ethnicity
tasks).

These results have implications for scalability — Twitter API rate limits make it difficult
to collect the complete social graph or tweets for a set of users. Additionally, this has
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important privacy implications; revealing even a small amount of social information may
also reveal a considerable amount of demographic information. Twitter users concerned
about privacy may wish to disable the setting that makes friend identity information public.

5. Conclusions and Future Work

In this paper, we have shown that pairing web traffic demographic data with Twitter data
provides a simple and effective way to train a demographic inference model without any an-
notation of individual profiles. We have validated the approach both in aggregate (by com-
paring with Quantcast data) and at the individual level (by comparing with hand-labeled
annotations), finding high accuracy in both cases. Somewhat surprisingly, the approach
outperforms a fully-supervised approach for gender classification, and is competitive for
ethnicity and political classification.

In short-term future work, we will test the generalizability of this approach to new
groups of Twitter users. For example, we can collect users by city or county and compare
the predictions with the Census demographics from that geographic location. Addition-
ally, we will investigate ways to combine labeled and unlabeled data using semi-supervised
learning (Quadrianto, Smola, Caetano, & Le, 2009b; Ganchev et al., 2010; Mann & Mc-
Callum, 2010). Finally, to fully validate across all demographic variables, we will consider
administering surveys to Twitter users to compare predictions with self-reported survey
responses.

Additional future work may investigate more sophisticated types of distant supervision.
For example, homophily constraints can be imposed to encourage neighbors to have simi-
lar demographics; location constraints can use be used to learn from county demographic
data. Also, while the multi-task model captures some interaction between demographic vari-
ables at training time, we can also use collective inference to reflect the correlations among
demographic variables. Finally, we have only considered a simple bag-of-words feature
representations; future work may investigate low-dimensional embeddings and non-linear
models.
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