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Abstract
We investigate a suite of recommendation algo-
rithms for audio news listening applications. This
domain presents several challenges that distinguish
it from more commonly studied applications such
as movie recommendations: (1) we do not receive
explicit rating feedback, instead only observing
when a user skips a story; (2) new stories arrive
continuously, increasing the importance of making
recommendations for items with few observations
(the cold start problem); (3) story attributes have
high dimensionality, making it challenging to iden-
tify similar stories. To address the first challenge,
we formulate the problem as predicting the percent-
age of a story a user will listen to; to address the
remaining challenges, we propose several matrix
factorization algorithms that cluster users, n-grams,
and stories simultaneously, while optimizing pre-
diction accuracy. We empirically evaluate our ap-
proach on a dataset of 50K users, 26K stories, and
975K interactions collected over a five month pe-
riod. We find that while simple models work well
for stories with many observations, our proposed
approach performs best for stories with few ratings,
which is critical for the real-world deployment of
such an application.

1 Introduction
Personalized news recommendation is of growing importance
due to the immediacy and diversity of online news. While
most prior work in news recommendation engines assumes
the user selects from a proposed list of stories (e.g., Google
News [Liu et al., 2010]), there is an increasing demand for
applications in which content is streamed continuously (e.g.,
Pandora and Spotify for music).

Rivet Radio is a Chicago based start up that creates, orga-
nizes and distributes personalized audio news and informa-
tion. The audio content is created throughout the day and is
tagged with a rich set of attributes that describe the quanti-
tative and qualitative aspects of the story. One of the distri-
bution channels to the consumer is Rivet’s iOS and Android

mobile app. The app allows users to pause or skip to the
next story at any time while listening to a story. This paper
presents algorithms to deliver a predictive sequence of sto-
ries using the meta data and the user actions to maximize the
listening by the user.

This domain presents several challenges that distinguish
it from more commonly studied recommendation problems.
First, we do not receive explicit user ratings for each item. In-
stead, we receive implicit feedback when the user decides to
skip to the next story in the stream. Second, news stories are
by definition new, which means that we will typically observe
few user interactions for a story when making recommenda-
tions. Thus, the cold start problem [Schein et al., 2002] is
of critical importance in this domain. Finally, the representa-
tion of each story is a high-dimensional term vector, making
it difficult to identify similar stories for recommendation.

Our proposed approach introduces new variants to recom-
mendation systems to address these challenges. First, to in-
corporate the available implicit feedback, we formulate the
task as a prediction problem to infer the percentage of a news
story that a user will listen to before skipping. Thus, stories
skipped in the first few seconds are deemed less relevant than
those skipped near the end. Second, we propose a matrix fac-
torization algorithm that jointly clusters users, n-grams, and
stories simultaneously, optimizing the clusters for prediction
accuracy. By reducing the dimensionality of content features,
we can more accurately make recommendations for stories
with few observed interactions.

We empirically evaluate our approach on data collected
from the Rivet Radio news, consisting of 50K users, 26K sto-
ries, and 975K interactions collected over a five month pe-
riod. We find that while simple content-based models work
well for stories with many observations, our matrix factoriza-
tion approach performs best for stories with few observations.
We additionally find that combining models into an ensemble
can further improve overall accuracy.

The remained of the paper is organized as follows: Sec-
tion 2 summarizes related work, and Section 3 formalizes our
problem setting. Section 4 presents our proposed model, as
well as a number of baseline models, and Section 5 describes
our empirical results. Section 6 concludes and outlines future
directions.

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

1375



2 Related work
Recommendation systems are widely used to recommend
products to users. Many of the most successful recommenda-
tion systems are based on collaborative filtering (CF) [Sarwar
et al., 2001; Adomavicius and Tuzhilin, 2005], which lever-
ages the ratings of similar users to make predictions. In many
domains, such as movie or product recommendation, it is as-
sumed that users provide explicit feedback for items through
ratings or purchase history [Bennett and Lanning, 2007]. This
type of explicit feedback is not available in our domain.

Because explicit feedback is often not available, systems
built on implicit feedback (clicks, purchases, etc.) have also
been studied [Das et al., 2007; Liu et al., 2010; Breese et
al., 1998; Hu et al., 2008; Johnson, 2014]. These approaches
are most appropriate when the user feedback indicates a pos-
itive preference – e.g., clicking on a news story or clicking
on a “thumbs up” to indicate a positive preference for a song.
However, in our domain, the only interaction we observe is
a negative one – the user presses a button to skip to the next
news story. We use information about when this occurs to
guide learning.

In this sense, our domain is most similar to streaming mu-
sic recommendation systems [Mcfee et al., 2012; Vandenoord
et al., 2013], in which personalized playlists are streamed to
the user. However, in music recommendation, implicit ratings
are often constructed based on the number of times a user lis-
tens to a track [Vandenoord et al., 2013]; this is less useful in
the news domains, in which stories are typically only listened
to once by a user. Furthermore, while the cold start problem
does affect music recommendation, it is even more paramount
in news recommendation (since many more stories are gener-
ated each day, and their relevance degrades more rapidly with
age).

The most common approach to the cold start problem is
to create a hybrid system that combines content features with
collaborative filtering to make recommendations for items (or
users) with little history [Claypool et al., 1999; Schein et al.,
2002]. In this paper we combine matrix factorization with
regression to address the cold start problem. Matrix factor-
ization is commonly used in recommendation systems due to
its ability to identify clusters of users and items, thereby im-
proving generalizability from sparse data [Zhang et al., 2006;
Takacs et al., 2008; Salakhutdinov and Mnih, 2008; Rendle
and Schmidt-Thieme, 2008]. When a user or item has few
observations, it can be difficult to determine its latent factors.
To address this, prior work has proposed regression-based
approaches, which fit a regression model of item and user
attributes to infer latent attributes, the output of which are
then used to make recommendations [Saveski and Mantrach,
2014; Gantner et al., 2010]. Agarwal and Chen [2009] fur-
ther proposes a model that performs these steps jointly, rather
than in a pipeline.

Local Collective Embeddings (LCE) [Saveski and
Mantrach, 2014] is a matrix factorization approach that
identifies a latent space common to both item features and
the rating matrix. Using this common latent space, items
can effectively be mapped to the appropriate latent factor
even with few ratings. While LCE has shown to be effective

Type Top features
Concept 1 associated press, technology, welcome
Concept 2 sports, welcome
Concept 3 marketplace, science

Concept 4 marketplace, associated press, business
crimes & courts, government & politics

Concept 5 art & entertainment, lifestyle, technology
Bias art & entertainment, lifestyle, TV & film, weekend

Table 1: Top features for each concept.

in cold-start settings, it has several limitations that make it
ineffective in our domain: it assumes non-rated items have a
zero rating, and it also does not capture well a user’s overall
bias and an item’s popularity. Furthermore, prior use of LCE
for news recommendation used explicit user feedback in the
form of comments on stories; here, we use only the implicit
feedback of user’s skipping stories, which is a continuous,
rather than discrete, variable. In this paper, we extend this
approach and propose a non-linear LCE that addresses these
limitations. In our approach, we decompose an (implicit)
ratings matrix as a product of three matrices: user hidden
concepts, term hidden concepts, and item to term matrices,
where terms are textual or categorical features from each
news story.

One advantage of our non-linear LCE model is that it finds
hidden factors for each item feature (term) and maps it to the
conceptual space. Table 1 displays the five hidden concepts
produced by one run of our model, showing top features for
each hidden concept as well as the overall bias term. For ex-
ample, Concept 3 relates to news from marketplace.org and
science news. The bias in this table shows overall item popu-
larity; the top features are similar to Concept 5, but have more
TV & film terms.

3 Problem formulation
In mobile radio applications, a news playlist is generated pe-
riodically and sent to users. The goal is to stream to users
only the news stories that they would like to listen to, and to
do so with minimal effort from the user. Thus, when a story
is streamed, two outcomes are possible: the users may listen
to the entire story, or the user may choose to skip to the next
story at any point. The skip action is the primary negative
feedback received by the system.

There are many ways one can encode this feedback. For
example, one can simply use a binary preference matrix,
where 0 indicates a skip and 1 indicates that the story was
listened to completion. However, skipping in the first 5 sec-
onds often means something different than skipping in the
final 5 seconds of a story. An arbitrary cutoff could be used,
but there are drawbacks to discretizing continuous variables,
such as reduced statistical efficiency [Royston et al., 2006].
For these reasons, in this work we define the user’s rating for
a story as the percentage of the story that she listens to. Let
this value be Ri,u. So, if user u listens to 75% of story i,
Ri,u = .75.

Each story contains the text of the story, some categorical
information (e.g., tags), as well as a timestamp. In prepro-
cessing, we convert these content features into a tf-idf vector

1376



Si for story i.
Let T be a list of (item, user) pairs, Ti be the list of users

that rate item i, and Tu be the list of items rated by user u.
The problem is to predict rating Ri,u for unexpired stories
(that are possibly new) for each user. If yi,u is a predicted
rating, then the error is ei,u = yi,u � Ri,u. Our objective is
to minimize Root Mean Square Error (RMSE) for all rated
values (i, u) in T : RMSE =

q
1
|T |

P
(i,u)2T e2i,u

Given predictions for unobserved ratings in T , the appli-
cation constructs a playlist for a user by selecting the highest
rated stories for that user.

4 Models
We begin with a simple content-based model, then extend it
to include collaborative filtering and latent variables.

4.1 Content-only model (NLR)
Given a historical ratings matrix T , our goal is to fit a regres-
sion model to produce a prediction for yi,u, representing the
rating given to item i by user u. We introduce a parameter
vector ↵ that represents the importance of each item feature
in Si, as well as a user-specific bias term �u which represents
the typical rating given by user u. Since the ratings are all
in [0, 1], we use the logistic function to ensure our predicted
rating is in the same range. The resulting hypothesis is as
follows:

yi,u = �(Si↵+ �u)

To fit parameters, we minimize the KL-divergence between
y and R using gradient descent, using L2 regularization, de-
scribed in more detail in the next section. Note that this model
uses no collaborative filtering. In the experiments below, we
refer to this as the non-linear regression model (NLR); as an
additional baseline, we also report results of linear version
of this model (REG), which simply removes the logistic link
function and uses least square error in cost function. Both
of these methods can be considered standard text regression
models (the real-valued counterpart to traditional text classi-
fication).

4.2 Non-linear Local Collective Embedding
(NLLCE)

Matrix factorization is widely used in recommendation sys-
tems [Takacs et al., 2008]. The idea of matrix factorization is
to decompose a rating matrix R as a product of two smaller
matrices representing clusters of items and users. Often, this
is done without considering item attributes, relying solely the
ratings. The main challenge of using matrix factorization in
our domain is identifying latent factors for new stories, which
have few or no ratings. In such cases, we wish to use the item
attributes Si to infer the latent factors for item i. While prior
work has proposed fitting a separate model to Si to predict the
latent factors [Vandenoord et al., 2013], it is desirable to com-
bine these two steps into a single objective, as in Agarwal and
Chen [2009]. Additionally, when the item feature vector has
high-dimensionality, we may also want to jointly decompose
S with the R matrix for better generalizability [Saveski and
Mantrach, 2014]. Thus, our goal is to jointly decompose the

ratings matrix R and the item feature matrix S, while simul-
taneously using the decomposition of the item feature matrix
to inform the latent factors for items with few ratings. Our
resulting model combines ideas from this prior work, while
also extending them to the audio news setting.

We call the resulting approach non-linear local collective
embedding (NLLCE), due to its relation to the Local Collec-
tive Embedding approach of Saveski and Mantrach [2014].
The hypothesis is:

yi,u = �(Si↵+ �u + µ+ UT
u V ST

i )

where ↵ and �u are defined as in the prior section, µ is the
overall rating mean, U is the latent factor matrix for users,
with Uu as the row for user u, and V is the latent factor matrix
that links the user factors with the item features Si. It is V that
allows us to make predictions for items with few ratings.

Since we have restricted both Ri,u and yi,u 2 [0, 1], we
can construct an optimization problem to minimize the KL-
divergence between R and y:

DKL(Ri,u||yi,u) = Ri,u log
Ri,u

yi,u
+ (1�Ri,u) log

1�Ri,u

1� yi,u

= C �Ri,u log yi,u � (1�Ri,u) log(1� yi,u)

where C is a constant. To reduce overfitting, we use L2 regu-
larization, resulting in the following final objective:

J =�
X

(i,u)2T

Ri,u log yi,u + (1�Ri,u) log(1� yi,u)

+

�

2

(||↵||2 + ||�||2 + ||U ||2 + ||V ||2)

We perform gradient descent to optimize this objective.
The gradients are as follows:

@J

@Vh
=

X

i

Si

X

u2Ti

ei,uUu,h + �Vh

@J

@Uu
=

X

i2Tu

ei,uV Si
T
+ �Uu

@J

@↵
=

X

u

X

i2Tu

ei,uSi + �↵;
@J

@�u
=

X

i2Tu

ei,u + ��u

The main advantages of non-linear LCE model over prior
work is as follows:

• It does not treat missing values as zero ratings, as in
LCE.

• It contains additional terms for the user bias (�u) and the
item popularity (Si↵).

• It does not need a separate regression task to estimate
latent factors.

• It uses a non-linear (sigmoid) kernel to account for the
real-valued expected output.
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4.3 Other baselines
In addition to the content-only models described above (REG
and NLR), here we describe a number of competing base-
lines. While these are based on prior work, we have had
to adapt each method to work with real-valued outputs, to
handle cold-start problems, and we have also added terms to
some models to handle item and user bias.
1. Baseline (BL): We use a baseline common in recommen-
dation systems, which is simply a function of item bias bi (the
deviation between overall item ratings and µ), user bias bu
(the deviation between overall user ratings and µ) and overall
rating average µ: yi,u = bi + bu + µ. For new item j, we use
ridge regression to find bj , where the independent variable is
item feature vector Si and the dependent variable is bi.
2. Matrix Factorization with Regression (MFR): Inspired
by Gantner et al. [2010], we perform a two-stage estimation,
one to infer latent factors, and a second to predict the latent
factors from item features. The hypothesis is:

yi,u = �(Si↵+ bi + �u + µ+ UT
u Mi)

where U and M are latent factors for users and items, and
bj is an additional term for overall item popularity. As in
NLLCE, we use a KL-divergence objective optimized with
gradient descent. For new item i, we predict values for bi
and Mi using ridge regression fit on item attributes S in the
training data.
3. Local Collective Embedding (LCE): As in MFR, we
perform a two-stage estimation; however, latent factors for R
and S are learned simultaneously, as in Saveski and Mantrach
[2014]. The unified objective for factorization is:

J = c||S �MTH||2 + (1� c)||R� UTM ||2

where M and H are latent factor matrices, and c 2 [0, 1] is
a hyper-parameter that controls the importance of each fac-
torization. After minimizing the cost function and finding
coefficients (U , M , and H), again another regression task is
required to predict the rating of a new story (as in MFR). Let
V = (HHT

)

�1H , then for the the new item i with the feature
vector Si, the inferred rating for the user u can be computed
as:

yi,u = Uu
TV Si

T
= Uu

T
(HHT

)

�1HSi
T

In practice, this model has very poor results; we believe
that is mainly because it assumes zero ratings for missing rat-
ings. As a result, we do not include this model in the evalua-
tion and in ensemble model.
4. Clustered Non-linear Regression (CNLR): The draw-
back of the content-only models (REG, NLR) is that they do
not distinguish well between different types of users. This
can result in poor accuracy for users with many historical rat-
ings. CNLR attempts to address this by first clustering users,
then introducing separate parameter vectors for each cluster.
To do so, we compute the singular value decomposition of S,
then map the ratings of a user into the resulting conceptual
space:

S ⇡ U⌃V T
;R⇤

u =

1

|Tu|
RuU

where R⇤
u is the map of user u’s activities in the conceptual

space, normalized by the number of ratings for the user. We

next run k-means clustering on the R⇤
u vectors to get user

clusters. To find k clusters, we truncate the SVD to the top 3k
singular values. Suppose C(u) is the cluster of user u, then by
adding separate coefficients for each cluster, our hypothesis
becomes:

yi,u = �(Si(↵+ ↵C(u)) + �u + �C(u))

We again use gradient descent to minimize the KL-divergence
of the true and predicted ratings. To deal with selecting k, we
run the model with varying numbers of clusters and use the
average for a final prediction.
5. Regression-based Latent Factor Models (RLFM). This
is the approach of Agarwal and Chen [2009], which aims to
deal with both cold and warm start. However, this model re-
quires user attributes (such as demographics), which are not
available in our data, so we simplified the model to work
without user attributes. The main idea of this generative
model is very similar to the MFR model, except that it as-
sumes model error has a normal distribution. And then, with
expectation maximization (EM) approach, it tries to estimate
the error’s variance. In fact, this model treats the error’s vari-
ance as a regularization term (similar to �), but it also esti-
mates it in the maximization step. The hypothesis of simpli-
fied RLFM is:

yi,u = ↵i + �u + µ+ UT
u Mi

In this model we assume that the error has a zero mean Gaus-
sian distribution:

ei,u =yi,u �Ri,u ⇠ N(0,�)

✏i =↵i � Si� ⇠ N(0, b2)

�i =Mi � SiVi ⇠ N(0, a2I)

where �i has a multivariate Gaussian distribution. In the ex-
pectation step, we minimize the negative complete data log-
likelihood:

� log(P [y,↵,�, U,M |S, V, �, �,�, b, a]) = C

+

X

i,u

e2i,u
2�2

+

||✏||2

2b2
+

||�||2

2a2

where C is a constant. We start with initial guess for V , �, �,
b, a and use the gradient descent method to find ↵,�, U,M .
In the maximization step, the ridge regression can be used to
update the V and the �. Then, the variances is updated as
following:

�2  E[e2i,u]; b2  E[↵2
i ]; a

2  E[MT
i Mi]

6. Clustered Collaborative Filtering (CCF): We can use
traditional collaborative filtering with clustering to deal with
the cold-start problem. In this memory-based approach, we
cluster stories with the k-means algorithm and take an aver-
age of ratings for each cluster for each user. Then we can
apply the traditional collaborative filtering to find ratings for
clusters that do not have rating for some users. We can use a
heuristic by creating different number of clusters in each run
to create multiple predictors, then we take the average of all
these predictors to compute the final predictor.
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(a) Linear and memory-based models. (b) Non-linear models.

Figure 1: RMSE for all models as number of observations per user increases.

User-cold User-warm

Item-cold

Size: 23% Size: 25.7%
ENS: .4106 ENS: .3518
NLR: .4142 NLLCE: .3566
MFR: .4156 CNLR: .3600
CLNR: .4167 NLR: .3604
NLLCE: .4169 MFR: .3613

Item-warm

Size: 27.1% Size: 24.2%
ENS: .4109 ENS: .3482
NLR: .413 NLR: .3525
MFR: .4135 CNLR: .3526
CNLR: .4160 MFR: .3531
NLLCE: .4172 NLLCE: .3533

Table 2: Comparison of models in different item-user and
cold-warm quartiles. Users with fewer than 130 ratings are
user-cold, and items with fewer than 30 ratings are item-cold.

7. Nearest Neighbor Collaborative Filtering (NNCF): An-
other way to deal with cold-start is to use the item-item sim-
ilarity between the feature vectors instead of using the item-
item similarity based on ratings. We use Latent Semantic
Analysis (LSA) to reduce the dimension, and after the trans-
formation to the lower dimension, ⌃i is the reduced dimen-
sion of Si. To estimate the rating Ri,u, we can estimate
it as the average ratings of all item j for user u, weighted
by Pearson’s correlation between the reduced dimensions:
Sim(i, j) = 1 + Pearson(⌃i,⌃j). The resulting hypothesis
is:

yi,u =

1P
j2Tu

Sim(i, j)

X

j2Tu

Sim(i, j)Rj,u

We found better results by defining different thresholds to
prune from the weighted average ratings with low similarities.
We compute the average result over set of fixed thresholds.

4.4 Adding temporal dynamic
The user’s taste can change over time. For example, users
who prefer technology stories might at some point begin to
prefer sports stories. In order to address this, we assume an
exponential decaying window, and add it in the cost function.
For example, for linear regression model, we can update cost

Figure 2: RMSE as the number of ratings per item increases.

function as following:

J(↵,�) =
1

2

X

(i,u)2T

e�ct(i,u)e2i,u +

�

2

(||↵||2 + ||�||2)

Where c is a small number that control decaying strength, and
the t(i, u) is the seconds between training time, and when the
user u listens to the story i. We add temporal dynamic to all
model-based models (except RLFM).

4.5 Ensemble (ENS)
Given that we expect some models to work relatively better
under different conditions (e.g., cold/warm items, cold/warm
users), in the last approach, all of models are combined to
create an ensemble model. To avoid overfitting, we run mod-
els with different hyper-parameter values, for example with
5, 10, 15, and 20 latent factors, and let the ensemble model
find weights of each model. In this model, we first split the
results of all models based on number of user activities in
training. For example, we group the output of all models for
users that have less than 5 activities together, and between 5
to 10 activities together. After splitting, we can use the ridge
regression on each split, where the independent variables are
the output of the models, and the dependent variable is the
truth value of ratings. In our implementation, we use 26 total
model variants to create the ensemble model.
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5 Evaluation and results
We use a dataset from an existing mobile radio application.
In our experiments, we use 975K activities from March 2nd
to August 3rd, 2015, containing 51K users and 26K news sto-
ries. The term vectors are derived from over 1.8M tokens and
123K terms (unigrams and bigrams); we remove terms on a
stop list as well as those appearing in fewer than 3 documents.
In the evaluation process, to reflect the real-world setting, we
train on prior activities to infer the next hour of activity. In
practice, we find that using only 7 prior weeks’ activities is
sufficient. For example, for testing on activities on July 1st
between 10:00am and 11:00am, we train on the data from
May 14th, 10:00am to July 1st, 10:00am. We run 26 model
variants for activities from April 20th to June 7th, and save
the model predictions. Then we use this output to train the
ensemble model on activities from June 8th to August 3rd.

Figures 1(a) and Figure 1(b) compare results of different
models on the test set. In these figures, the y-axis is RMSE
and the x-axis is the the number of user ratings in the train-
ing set. As a result of user cold-start, the RMSE is higher
when we have few user ratings, and it gradually decreases by
increasing number of ratings.

Figure 1(a) compares linear and memory-based models.
As expected, the baseline has highest error. According to this
plot, memory-based models (CCF and NNCF) have slightly
higher error than linear models (REG and RLFM) in the user
cold-start state, but their error is lower in the user warm-start
state.

Figure 1(b) compares non-linear models. According to
this plot, non-linear models have lower error than both lin-
ear models and memory-based models. MFR has higher
error than other non-linear models. The difference between
the NLR and the CLNR models is not significant, and the
clustering does decrease the error of NLR model (most likely
because we do not have user demographics), but can generate
playlists that are more customized to the specific user. Our
proposed NLLCE method has the lowest error. In addition,
as expected, the ensemble model significantly decreases the
error compare to all other models. Thus, it appears that the
ensemble approach is able to combine the best of each model.

In the next experiments, we followed prior work to par-
tition the user-item space into four roughly equal quartiles
[Park and Chu, 2009]. To create quartiles, we classify users
that rate fewer than 130 items as the user-cold set, and re-
maining users as the user-warm set. Similarly, we classify
items that have been rated by fewer than 30 users as the item-
cold set, and remaining items as the item-warm set. Table 2
shows results of the top 5 models for each quartile. The ENS
model is the top model in all quartiles.

According this table, the NLR model, which predicts al-
most the same playlist for all users, is the best stand-alone
model for the user cold-start state. This makes sense, since
collaborative filtering has little information to work with for
cold users. For the item cold-start state, NLLCE works much
better with the user warm-start state. In addition, this ta-
ble shows that dealing with the user cold-start state is much
harder than the item cold-start state (which we again attribute
to lack of user attributes). When we have warm-start for both

Figure 3: Warm and cold start comparison for the ensemble
model over one month (x-axis is days, y-axis is the daily av-
erage of ratings).

users and items, NLR and NLLCE have similar results. Thus,
we find NLLCE to be the best model for users with at least
130 observations, and NLR to be the best model for users
with fewer than 130 observations.

To investigate item cold-start, Figure 2 plots RMSE as the
number of ratings per item increases. We sort all predicted
ratings by the number of ratings the target item has at predic-
tion time. We then compute a sliding average RMSE, using a
window of size 200. From this figure, we can see that most
items have few ratings (the median is 31 ratings). Moreover,
NLLCE has lower error than NLR up to items with around
50 ratings. At this point, we suspect that NLLCE begins to
overfit in the collaborative filtering component.

Finally, Figure 3 compares ensemble prediction in chrono-
logical order for the different quartiles for July 2015. The
x-axis shows the day of the month, the solid line shows the
daily average of the truth ratings, and the dash line show the
average of the ensemble model prediction for each day. Ac-
cording to this figure, while the ensemble model has some
error in the user cold-start states, the error is much lower in
the user warm-start states. In addition, the results of the item
warm-start state is slightly better than the the item cold-start
state, but the difference is small. This shows again that the
model can handle the item cold-start challenge.

6 Conclusion and future work
In this paper, we propose several models to address the cold-
start in recommendation systems. Our results suggest that
the Non-Linear Local Collective Embedding (NLLCE) model
has lower error than other models in the item cold-start states.
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In addition, by simplifying the NLLCE model, we create the
Non-Linear Regression (NLR) model that has better results
in the user cold-start states. Finally, we find that blending
different models with the ensemble method can significantly
improve results in both the cold-start and the warm-start for
users and items. In the future, we will investigate the effect
of adding social media and demographic attributes of users,
and create new models that deal better with the user cold-start
state.
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