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Abstract—Deep learning algorithms have recently produced
state-of-the-art accuracy in many classification tasks, but this
success is typically dependent on access to many annotated
training examples. For domains without such data, an attractive
alternative is to train models with light, or distant supervision. In
this paper, we introduce a deep neural network for the Learning
from Label Proportion (LLP) setting, in which the training
data consist of bags of unlabeled instances with associated label
distributions for each bag. We introduce a new regularization
layer, Batch Averager, that can be appended to the last layer of
any deep neural network to convert it from supervised learning
to LLP. This layer can be implemented readily with existing
deep learning packages. To further support domains in which
the data consist of two conditionally independent feature views
(e.g. image and text), we propose a co-training algorithm that
iteratively generates pseudo bags and refits the deep LLP model
to improve classification accuracy. We demonstrate our models on
demographic attribute classification (gender and race/ethnicity),
which has many applications in social media analysis, public
health, and marketing. We conduct experiments to predict
demographics of Twitter users based on their tweets and profile
image, without requiring any user-level annotations for training.
We find that the deep LLP approach outperforms baselines for
both text and image features separately. Additionally, we find
that co-training algorithm improves image and text classification
by 4% and 8% absolute F1, respectively. Finally, an ensemble
of text and image classifiers further improves the absolute F1
measure by 4% on average.

I. INTRODUCTION

Deep learning methods have produced state-of-the-art accu-
racy on many different classification tasks especially for image
classification[1], [2], [3], [4], [5]. Because these networks
typically have millions of parameters, they rely on access to
large labeled data sets such as ImageNet [6], which has over
one million annotated images. While transfer learning can help
adapt a network to a new domain [7], it still requires labeled
data on the target domain.

An attractive alternative is Learning from Label Proportion
(LLP), in which the training samples are divided into a
set of bags, and only the label distribution of each bag is
known. The main advantage of LLP is that it does not require
annotations for individual instances. Furthermore, in many
domains label proportions are readily available — for example,
by associating geolocated social media messages with county

population statistics, we can fit a model of demographics
without annotating individual users.

While many LLP models have been proposed based on the
logistic hypothesis [8], SVM [9], and graphical models [10],
there has been little work that considers deep learning. In
this paper, we propose an approach which converts a deep
neural network from a supervised classifier to LLP. This
method can readily be implemented in popular deep learning
packages by introducing a new regularization layer into the
network. We propose such a layer, called the Batch Averager.
Similar to label regularization [8], this layer computes the
average of its input as the output. Like other regularization
layers, this layer is only applied at training time. The Batch
Averager is typically appended to the last layer of a network
to convert it from a supervised learning to a deep LLP. We use
KL-Divergence as the error function to train the network to
produce predictions that match the provided label proportions.

This deep LLP framework has these key advantages:

• Simplicity: The Batch Averager is based on a very
simple tensor operation (average) and, unlike the Batch
Normalizer layer [11], it does not have any training
weights and does not noticeably affect training time.

• Compatibility: The framework is fully compatible with
almost every deep learning packages, and requires only
a few line of codes to implement. We have tested the
approach with both Theano [12] and Tensorflow [13].

• Availability: The framework can convert almost every
supervised classification network to LLP.

• Accuracy: Our empirical results indicate that the deep
LLP has a comparable accuracy to supervised models
subject to proper constraints to generate bags.

In addition, we also propose co-training with deep LLP to
further improve accuracy. In some applications, multiple views
of the data are available (e.g. text and image). For example,
many social media sites contain both image and textual data.
While there have been many deep learning methods that
directly combine text and image features (e.g., [14]), we
instead require a model that is robust to cases where one
feature view is missing. For example, some users may not post
images, yet we would still like to classify based on the text.
An attractive alternative is co-training [15]. Because traditional
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co-training requires labeled data, we propose a new algorithm
that is more suitable for the LLP setting. In this method, we
use an image-based LLP model to create bags with estimated
label proportions, which we call pseudo-bags. We then fit a
text-based LLP model on these pseudo-bags, and use it to in
turn create pseudo-bags for the image-based model.

We conduct experiments classifying Twitter users into de-
mographic categories (gender and race/ethnicity) based on the
profile image and tweets. We find that the proposed deep LLP
framework outperforms both supervised and LLP baselines,
and that co-training further improves accuracy of the models.

The remainder of the paper is organized as follows. In
Section II, we review related work on LLP and co-training, and
Section III provides our deep LLP framework and co-training
algorithm. In Section IV we describe the data collected for the
experiments. In Section V we present our empirical results;
Section VI concludes and describes plans for future work.

II. RELATED WORK

Deep learning methods have produced state-of-the-art re-
sults on many classification tasks, but typically require many
labeled training instances. For image classification, researchers
usually compare their model by training on large datasets such
as ImageNet [6]. VGG-16 network (2014) achieves 90.1%
top-5 accuracy (single crop) [1] on ImageNet by stacking 16
layers on the top of each other. ResNet-152 network (2015)
improves that to 93.3% by introducing the residual networks
[2]. Inception V1-V3 networks present inception module for
convolutional neural network [4], [11], [16], and Inception-
V3 (2015) achieves 94.1% top-5 accuracy on ImageNet. The
inception module can be combined with the residual networks
to create Inception-ResNet-v2 (2016) with 95.1 % accuracy
[5]. XCeption (2016) network introduces extreme inception
module by using deepwise separable convolution layers [17]
and achieves 94.5% top-5 accuracy [3].

All of these models highly rely on the vast amount of
labeled data. However, with transfer learning, the pre-trained
weights (using ImageNet) can move to other image classifica-
tion tasks [7]. But, still we need annotated data on the target
domain, and alternative approaches such as LLP are required
in the absence of labeled data.

Only a handful of researchers attempt to use deep learning
for LLP settings. Kotzias et al. [18] propose a model for the
particular case of LLP when the label of bags are available.
For example, for text classification task, when we have the
label of a bag of multiple sentences, they propose a model to
infer the label of each sentence using an objective function to
smooth the posterior probability of samples based on sample
similarity and bag constraints. They use a convolutional neural
network to infer sentence similarity for text classification.

Other researchers provide models for image segmentation.
In this setting, each image is split into multiple small images
(as a bag), and the classifier tries to infer labels of these regions
using the label proportion of the bag. Li et al. [19] suggest
a convolutional neural network with a probabilistic method
to estimate labels by considering the proportion bias, using

the Expectation Maximization algorithm to determine model
parameters. In their approach, they use satellite images with
know ice area ratio to train a classifier to predict label of small
segments of images.

While these methods have promising results on a particular
domain, to the best of our knowledge, no method has proposed
a framework that can be readily applied to diverse classifica-
tion tasks. Inspired by label regularization [8], we fill this gap
by introducing Batch Averager as a regularizer layer.

The traditional L2 regularization appears to not be sufficient
for deep neural network because overfitting is a severe problem
in these networks. Srivastava et al. [20] introduce a Dropout
layer that randomly drops some units in backpropagation
step and show that it can significantly reduce overfitting.
Furthermore, the Batch Normalizer is introduced to normalize
the output of cells and reduce internal covariate shift of
weights [11]. Similar to these two normalization layers, our
proposed Batch Averager layer applies only at training time
(Batch Normalizer uses the moving average and standard
deviation to normalize the output at testing time without
updating the moving average and standard deviation).

Recently, demographic classification with deep learning has
been proposed by researchers. Zhang et al. [21] offer a
method to infer demographic attributes (gender) from the
wild (unconstrained images). Similarly, Liu et al. [22] propose
convolutional neural network to classify attributes such as age,
gender, and race in the wild. Ranjan et al. [23] provide a fast
RCNN to localize and recognize all faces in the scene with
their attributes (e.g. gender, pose). Few attempts to use both
textual and image features together.

Co-training is a semi-supervised method that trains on two
views of features on a small set of labeled data and iteratively
adds pseudo labels from a large set of unlabeled data [15].
Gupta et al. [24] demonstrate a co-training algorithm that
trains on captioned image to recognize human actions with
SVMs. Their model also learns from videos of athletic events
with commentary.

The majority of these works use captions to leverage image
classification accuracy by co-training methods, and cannot be
applied to text only classification purpose. Furthermore, they
require annotated labeled data. On the other hand, our pro-
posed co-training model trains both image and text classifiers
that can be used separately. Additionally, we do not need any
labeled data; and if the testing sample has both image and text
features, we can apply an ensemble model (by soft voting) to
improve the classification accuracy.

III. MODELS

In this section, we first define our proposed regularization
layer, Batch Averager. Then, we illustrate the deep LLP
framework with this layer. Next, we provide an algorithm to
create bags with appropriate label distributions for training.
Finally, we offer a co-training approach for training on two
views of data (e.g. text and image) in LLP settings.



A. Batch Averager Layer

In the Learning from Label Proportion setting, the training
data are divided into bags, and only the label distribution for
each bag is known. For bag i, let Bi be the set of samples in
this bag; i.e. Bi = {Xi,j} where Xij is the feature vector for
instance j in bag i. Let ỹi be the provided label proportion
for bag i, and Ti be the number of samples in this bag (i.e.
Ti = |Bi|). E.g., for binary classification, ỹi is the fraction of
positive instances in bag i.

To implement Deep LLP, we assume that each bag is
assigned to exactly one batch for gradient optimization. Also,
because deep neural networks are typically trained by GPU
cores with limited memory, there is usually a maximum batch
size determined by the number of parameters that can fit into
GPU memory. As a result, if a bag is too large, we need to
break it down into smaller bags.

Our work is inspired by label regularization [8], and we
define a regularization layer for a neural network. The label
regularization model estimates bag posterior probabilities by
the average of the posterior probabilities of the instances in
that bag. In a neural network, this can just be implemented
by computing the average of the output of the last layer per
batch. As a result, we name this layer Batch Averager.

Let y be the (unobserved) output of the last layer of a
supervised network. Because in classification tasks, the last
layer is typically logit function (either softmax or logistic), it
returns a vector of posterior label probabilities; i.e. for bag i,
instance j, and class k we have:

P (y = k|Xi,j) = y
(k)
i,j (1)

Inspired by label regularization, we estimate the posterior
probability of bag i, ȳi, as the average of posterior probability
of all instances in bag i; i.e.

ȳi
(k) =

1

Ti

∑
j∈Bi

P (y = k|Xi,j) =
1

Ti

∑
j∈Bi

y
(k)
i,j (2)

We expect that the bag posterior probability (ȳi) should be
close to the bag prior probability (ỹi). Again, similar to label
regularization, we use KL-divergence as the error function
between posterior and prior, and the target of the neural
network is to minimize this error function:

∆(ỹ, ȳ) =
∑
k

ỹ(k) log
ỹ(k)

ȳ(k)
(3)

The Batch Averager layer is very similar to the Batch
Normalizer layer [11]. The latter normalizes the output of the
batch to have zero mean and unit variance; the former converts
the input layer to its average. As a regularization layer, Batch
Averager is only applied at training time, not at testing time.
Typically, Batch Averager would be applied to the last layer
of the network, immediately after the Logit layer.

Implementing the Batch Averager is straightforward with
most current open-source deep learning packages. However,
most of these packages assume that the output of the network

is a tensor with the same size as batch size (Ti). As a result,
we need to repeat the average for Ti times. Similarly, we need
to repeat the prior (ỹi) for Ti times. Because the number of
samples per bag (batch size) is typically different per bag, we
need to add sample weight 1

Ti
for each sample in bag i. As a

result, the entire bag has sample weight one.
More formally, for bag i, we train the network in a sim-

ilar fashion as traditional supervised learning with feature
vectors [Xi,1, ...Xi,Ti

], labels [ỹi, ..., ỹi], and sample weights
[ 1
Ti
, ..., 1

Ti
]. We additionally use KL-divergence as the error

function for back propagation.
We use Keras1 to implement this layer, and it supports both

the Tensorflow [13] and Theano [12] backend. The implemen-
tation is very simple (just one line in Keras), and can extend to
other deep learning packages. Another implementation aspect
to take into consideration is that by default deep learning
packages assume fixed batch size. However, the bag size in
LLP is typically dynamic. To support dynamic batch size, we
implement a generator code to make batches and fit in the
network. Also, this generator code automatically breaks down
large bags to randomly smaller bags that can fit in the GPU
memory.

To implement this layer with dynamic batch size, we use
the broadcasting feature in tensor operations. Suppose K is
the backend (Tensorflow or Theano), we define this function
as the activation function for Batch Averager layer:

x× 0 + K.mean(x, 0) (4)

where x is the input tensor of the layer. Because the Batch
Averager is appended after the logit layer, x is a two-
dimensional tensor with size Ti ×N , where N is the number
of output classes. This function, first creates a zero tensor with
the same size of x. Then it computes the average of x over the
first axis as a vector tensor with size N . Finally, it adds them
together by using the broadcasting feature, and creates a tensor
with the same size of x, that the average of x is repeated over
the first axis for Ti times.

B. Deep LLP framework

In this section, we provide a framework to implement deep
LLP networks. This framework uses the Batch Average regu-
larizer as the last layer, and can be applied in any classification
application (e.g. text, image). We furthermore propose text
classification and image classification networks.

Similar to any classification deep network, in Deep LLP
framework, the input of the network is the feature vectors
(i.e. textual or image feature). Then we feed the network
with layers that are typically used for the classification task at
hand. The next layer is the Logit (softmax) layer to compute
class probabilities. Finally, we add Batch Averager for label
regularization, which sends the average of features to the
output.

For text classification, we simply use a shallow network with
only one dense layer (with 16 cells), followed by a dropout

1http://www.keras.io



Fig. 1. The deep LLP framework applied to image classification.

layer to avoid overfitting. We also use a temperature parameter
as suggested in previous work [8]. The temperature can be
readily implemented in the Logit layer by a tensor operation.

For image classification, we use Xception, a state-of-the-art
image classification model [3]. We use the pre-trained weights
(trained on ImageNet), and freeze the first two blocks of the
network to train it with the maximum batch size 32 and fit the
network with color images with dimension 299×299. Figure 1
shows a more detailed network for this model.

C. Bag creation algorithm

In some domains, bags are naturally available with soft
constraints such as geolocation, allowing us to assign label
proportions to groups of instances. For example, in experi-
ments below, we attach the U.S. Census statistics of county
demographics to Twitter users from the same location. How-
ever, in other domains, our constraint is a prior probability
based on an attribute of an instance. For example, according
to US Census, 67% of people with the last name ‘Taylor’ are
white. The problem is to construct a bag that combines many
of these constraints and associate an accurate label proportion
for training.

For class y and unlabeled samples {Xi}, we assume we
have a prior probability for this class P (y|Xi) (e.g., P (white |
Taylor) = .67). The goal is to select instances from Xi to
construct a bag, then to assign the expected proportion of that
bag that have class y. Algorithm 1 shows how to create bags
for this class. The algorithm takes as input a maximum bag
size (N ) and a threshold (t). In the results below, we set N to
64 for all experiments. The algorithm first removes samples
with probability lower than the threshold t. The threshold
is typically greater than .5 (in preliminary experiments, the
results were not very sensitive to this parameter and we tune
this threshold for each task; e.g. .8 for gender classification
and .9 for race classification). Then, samples are sorted by
decreasing order of their prior probability. Next, we move first

Algorithm 1 : This algorithm create bags with class prior and
returns them. Parameters: Prior probability P , class y, feature
vectors Xi, threshold t, and maximum batch size N .

1: procedure CREATEBAGS(P,Xi, y, t,N )
2: U ← {Xi : P (y|Xi) > t}
3: U ← Sorted(U, key = P (y|Xi)) . Descending order.
4: B ← []
5: ỹ ← []
6: while U 6= ∅ do
7: S ← first N samples in U
8: B.append(S)
9: ỹ.append(Average({P (y|x) : ∀x ∈ S}))

10: U ← U \ S
11: end while
12: return B, ỹ
13: end procedure

N sorted samples to the first bag, and the next N samples to
the next bag and continue until all remaining samples (above
the threshold) are assigned to bags. Finally, we compute the
bag label proportion as the average of the prior probability of
samples inside the bag. These bags are then used as training
data in the deep LLP model.

The advantage of this bag creation approach is that it allows
us to associate label proportions with instances using pre-
existing population statistics. Of course, these label propor-
tions are likely to be inexact, and contain some selection
bias due because Twitter users are not representative of the
population. However, several prior works have found that LLP
methods are robust to this type of noise [8]; we also find this
to be the case in the present work.

D. Co-training for LLP

In this section, we provide an algorithm for applying co-
training in the LLP setting. This algorithm is useful when we



Algorithm 2 : The co-training algorithm for LLP settings.
Parameters: Bags B(k), label proportion ỹ(k), and unlabeled
features U (k) for both views.

1: procedure COTRAININGLLP((B1, ỹ1, U1), (B2, ỹ2, U2))
2: B0 ← ∅
3: ỹ0 ← ∅
4: while Stopping condition do
5: dllp.train(B1 ∪B0, ỹ1 ∪ ỹ0) . Training step.
6: P ← dllp.predict(U1) . Create posterior.
7: B0, ỹ0 ← CreateBags(P,U1) . Create bags.
8: (B1, ỹ1, U1)↔ (B2, ỹ2, U2) . Switch views.
9: end while

10: end procedure

have two conditionally independent feature views of data. An
interesting case is when we have both text and image views
of the data. Some views may naturally have more bags than
others, or may have more accurate label proportions associated
with them. Thus, our goal is to combine the advantages of each
view to produce a more accurate classifier.

To apply our algorithm, we assume we have two sets of
bags, one with textual features and one with image features.
Let Bk, ỹk, Uk be bags, label proportions, and unlabeled data
for view k (e.g. text or image), where Uk refer to the same
set of instances. We propose Algorithm 2 for co-training in
LLP settings. The algorithm proceeds by using the model
trained on one view to create pseudo bags for the other view.
The algorithm is initialized with empty pseudo bags (B0, ỹ0).
For each iteration, we first train a deep LLP model on the
union of the current view (e.g. text or image) and the pseudo
bags for that view. Next, it predicts the posterior probability
of unlabeled samples with the current view. Then, it calls
Algorithm 1 to create pseudo bags, using the current view’s
posteriors as the priors P (y|x). Finally, it switches views for
the next iteration. In the experiments below, this algorithm
tends to converge quickly (e.g., six iterations).

IV. DATA

To evaluate our deep LLP framework, we consider the task
of predicting the gender and race/ethnicity of a Twitter user
based on their tweets and profile image. In this section, we first
describe how we collect data from Twitter and create bags, as
well as the annotated data used for validation.2

A. Twitter data

It is common that image data comes with metadata. This
metadata is useful to create bags. For example, images in
Flickr3 have caption and description. Also, Twitter users often
have a profile image. To demonstrate how the metadata can
be used as a constraint to create bags, we collect data from
Twitter. For the purpose of this study, we use geolocation and
name in the metadata as constraints to create bags.

2Replication code and data will be made available upon publication.
3http://www.flickr.com

Fig. 2. A county bag for race classification with 53% White American prior
probability.

First, we use the Twitter Streaming API to collect roughly
120K tweets and remove users without an image profile;
approximately 33K tweets with an image profile remain.
However, not all of users use their own photo. To decrease
noise, we want to ensure that there is only one face in the
image profile. To do so, we apply the Viola-Jones object
detection algorithm [25]. This algorithm detects multiple faces
in a scene with a low false positive rate. Finally, roughly 10.5K
images with exactly one identified face remain. (Please note
that this filtering only affects training data; validation data may
contain multiple faces.) For each user, we download the most
recent 200 tweets for use by the text-based model.

Next, we use the county and name metadata to create bags.
We use the county constraint as described in recent work [26]
by associating each user with a county in the U.S., based on the
geolocation information provided in their tweets. This results
in 85 bags with an average of 124 users per bags. Figure 2
illustrate a generated bag using the county constraint with 53%
prior probability of class ”white.” This figure shows that there
are some photos with multiple faces or cartoon faces, due to
errors in the face detection algorithm. So, we expect that our
photo bags will contain some noise.

We also use name attribute (where available in the user’s
profile) to estimate label proportions. For gender classification,
we use the first name with the data from US Social Security
Administration (SSA). For example, according to SSA baby
data4, for the first name ‘Casey’, the probability of being a man
is 59%. Then we use Algorithm 1 with N = 64 and t = .6 to
create bags. Figure 3 shows a bag using name constraints with
87% male prior probability. There is again some noise due to
face detection. Additionally, for race/ethnicity classification,
we use the last name as described in recent research [26] to
estimate class priors for users who provide their last name,
and run Algorithm 1 to create bags. For example, according
to US Census, 67% of people with the last name ‘Taylor’ are
white.

Finally, for evaluation purposes, we manually annotate 320
photos; the class distribution is shown in Table I. We use this
dataset only for the evaluation purposes, not for training.

4https://www.ssa.gov/oact/babynames/



Fig. 3. A gender bag that is created by name constraints with 87% male prior
probability.

TABLE I
THE DISTRIBUTION OF EVALUATION SET (MANUALLY ANNOTATED):

Race Male Female
Hispanic 15 15
White 105 105
Black 40 40

B. Google search

Figure 2 and Figure 3 show that Twitter profile images
are often noisy. Furthermore, the class distributions are un-
balanced, since African-Americans are less frequent in both
county and name constraints. This motivates a third type of
constraint for image classification. We submit keywords (e.g.
‘Latino woman’ and ’Black American man’) to Google images
search to identify images that are likely to come from the
desired class. Then, we apply the Viola-Jones algorithm to
remove photos without exactly one face in the scene. Because
Google search sort images in decreasing order of relevance,
we associate decreasing label proportions as we descend the
list. Specifically, we group search results into bags of size 64
for each contiguous set of results, up to a maximum of 800
results. The first bag is assigned a label proportion of 95%
for the positive class, and the proportion is reduced by 5% for
each subsequent bag, to a minimum of 55%.

C. CFD dataset

For additional validation, we use the Chicago Face Database
(CFD), which contains high-quality frontal images (without
background) for both genders and four racial/ethnic categories
(white, black, Hispanic, and Asian), and facial expressions
[27]. We remove Asian photos (because only few Asian
samples are in our Twitter data) and use this dataset as an
additional testing set. The advantage of this database is that it
has more samples for the Hispanic category than our validation
set. Table II shows the class distribution of the CFD database.

However, this dataset has a different distribution of our
training set. Our training set mostly has a wild condition (not
frontal, with background and lower quality). As a result, we
expect a different behavior of the classifier for this set. As we
will discuss below in the experimental results, because these
images have a very high quality, our race/ethnicity classifier is

TABLE II
THE DISTRIBUTION OF CFD DATASET:

Race Male Female
Hispanic 52 56
White 228 236
Black 231 295

extremely accurate (with 98% F1 measure for black and white
class). However, the F1 metric drops for gender classification
because the lack of body features for CFD dataset.

V. RESULTS

For the purpose of this study, we train image and tex-
tual classifiers for the demographic attribute (gender and
race/ethnicity) task. For race classification, we consider three
categories (white, black, and Hispanic). However, according
to the US Census5, Hispanic is a debated term that refers to
Spanish culture or origin regardless of race and can be of any
ethnicity. As a result, we consider another classification task
restricted only to black and white classes. We refer to the
latter as ‘race2’ and the former as ‘race3’ classification task.
Since labeled samples for both Twitter and CFD datasets are
imbalanced, we report the weighted average F1 measure to
compare results.

In this section, we first provide experimental results for
text classification task and compare it with the state of the
art baselines. Then, we describe image classification results
and compare them with third-party face APIs. Finally, we
demonstrate how co-training improves both text and image
classification, as well as the advantage of an ensemble ap-
proach.

A. Text classification result

Because the search constraints created by searching for
Google images do not have any textual features, for text
classification task we only use county and name constraints.
Table III shows the weighted F1 measure for different tasks
with all combination of constraints. According to this table,
the county constraint results in higher accuracy for race
classification, and name bags have higher accuracy for gender
classification. That means that location is more informative
for the race classification, and first name is more informative
for the gender classification. Also, for the race task, using
both constraints together increases the classification accuracy,
but for the gender classification, the result of combining
constraints is almost same as using only name bags.

Since using both constraints improves (or at least does not
harm) the classification task, we use both name and county
constraints in all subsequent text classification experiments.
We use the maximum batch size of 32 to generate Table III;
to do so, any larger bags are randomly split into smaller bags
with the maximum size of 32 at each iteration of training.

Table IV presents the weighted average F1 metric for differ-
ent maximum batch sizes using county and name constraints.

5http://www.census.gov/prod/cen2010/briefs/c2010br-04.pdf



TABLE III
THE WEIGHTED AVERAGE F1 MEASURE FOR DIFFERENT TASKS AND

CONSTRAINTS FOR TEXT CLASSIFICATION ON TWITTER DATASET.

Model race2 race3 gender Average
county 78 64 54 65
name 61 55 83 66
county-name 80 73 83 79

TABLE IV
THE WEIGHTED AVERAGE F1 MEASURE WITH DIFFERENT BATCH SIZE FOR

TEXT CLASSIFICATION ON TWITTER DATASET.

Max batch size race2 race3 gender Average
16 80 71 83 78
32 80 73 83 79
64 73 64 83 73

According to this table, while gender classification is stable
for different batch sizes, the maximum batch size of 32 works
better for race tasks. This result is not surprising, because a
batch size of 16 is too small for a bag, and batch size of 32
has the advantage of randomly splitting bags (that is created
with size 64) to avoid overfitting. An interesting case is batch
size of 1, which associates a label distribution to individual
instances. The problem with this approach is that it is less
robust to noise — for example, if a label proportion of 90%
positive is applied to a negative instance, the classifier will
attempt to fit this noisy example. However, if this instance is
the only negative one in a batch of size 10, then the classifier
is given the flexibility of predicting it as negative while still
optimizing the loss function. Indeed, we find that batch size
1 is not effective on this task.

Finally, we compare our deep LLP model with state-of-
the-art shallow LLP models — we use ridge regression for
LLP [26] and label regularization [8] for comparison. Table V
compares our model with maximum batch size 32 with other
models for county and name constraints. According to this
table, while our model has the same F1 as ridge LLP for race2
task, it has higher F1 for all other tasks. More specifically, on
average, while both ridge LLP and label regularization have
the same F1 score (76), our model has the highest F1 measure
(79).

B. Image classification result

In this section, we present image classification results using
our proposed deep LLP model. For all experiments, we use the
XCeption model [3] with its training weights fit on ImageNet.
The ImageNet dataset [6] that is commonly used for image
classification has over a million images for 1,000 objects but
does not have any class related to a human face or body.
Because we have the best result with the maximum batch size
32 in the last section, we use it again for image classification
task. To reduce memory consumption, we freeze first two
blocks of XCeption network in the training phrase, and train
the remaining layers.

To avoid overfitting and make the model robust to the wild
condition of images, we apply various image distortions before
each training iteration; we randomly rotate, flip (horizontally),

TABLE V
COMPARISON WITH THE STATE OF THE ART LLP TEXT CLASSIFICATION

BASELINES ON TWITTER DATASET.

Model Name race2 race3 gender Average
Deep LLP 80 73 83 79
Ridge LLP 80 69 79 76
Label Regularization 79 68 82 76

TABLE VI
COMPARISON OF F1 OF IMAGE CLASSIFICATION FOR DIFFERENT

CONSTRAINTS ON TWITTER AND CFD DATASETS:

Database TW CFD TW CFD TW CFD
Task race2 race2 race3 race3 gender gender
county 76 72 52 25 53 59
name 61 30 54 25 88 65
search 85 94 71 83 91 73
county-name 61 31 52 25 93 68
county-search 83 85 79 82 93 67
name-search 81 91 79 85 92 68
county-name-search 92 98 77 75 95 75

shift (vertically and horizontally), shear, and zoom photos.
Also, with probability of 80%, we randomly crop the Viola-
Jones detected face to avoid overfitting the background in
images. We use Adam [28], an adaptive stochastic gradient
descent algorithm, as an optimization algorithm, and we train
all models for up to 20 epochs and report the accuracy on the
validation set (Twitter annotated image profiles).

Table VI shows the weighted average F1 measure for
different tasks using all constraint combinations. According to
this table, the search constraint is more informative in all tasks,
and using county with name constraints together has a poor
result for race classification. Also, except for the race3 task,
using all constraints together has the best result. By comparing
this with text classification, because of search constraints, it
is apparent that image classification has higher accuracy than
text classification.

This table also presents the F1 metric for CFD dataset. For
race2, the model has a very high result of 98% F1 measure.
This result reveals that race classification is much easier with
high-quality frontal photos, as opposed to the noisier images
from Twitter. On the other hand, while the gender classifier
has very high F1 (95%) for Twitter images, it has lower F1
for CFD dataset. We believe that is in part because the CFD
images omit body features, and so the classifier must rely
solely on face features.

Since, on average, using all constraints has the highest
average F1 measure on all tasks, in all next experiments we
present the results of models that trains with all constraints.
Figure 4b illustrates the validation accuracy (on Twitter labeled
data) of each training epoch for different classification tasks.
Clearly, the gender classification has the highest accuracy and
converges faster than other classes, and race3 has the lowest
accuracy and converges slower.

To illustrate the impact of adding image distortion to make
the model robust to the wild condition of pictures, Table VII
compares a model trained with random distortion using all
constraints with the model without any distortion (Xception-
no-distortion). According to this table, clearly, we need image



manipulations for almost all tasks, and adding random dis-
tortion to photos has on average 7% absolute improvement
of the F1 measure. Similarly, Figure 4a shows the training
and validation loss (KL-divergence) of race2 classification per
epoch. According to this figure, the model that trains without
image distortion overfits by converging to a lower training loss
but with a higher validation loss.

To measure the effect of the underlying deep neural network,
Table VII demonstrates the average F1 of deep LLP models
using various neural networks (with all constraints). We com-
pare Xception with Inception-v3, Inception-v4, and Inception-
v4-aux networks, and the former is same as Inception-v4, but
has an auxiliary output layer as proposed by Szegedy (2016)
[5]. We add another Batch Averager after the auxiliary layer
and use KL-divergence for that too.

According to this table, Inception-v3 has a poor result, and
Inception-v4 does not converge for race3 task, but has the
highest F1 measure (99%) for race2 for CFD dataset. Also,
the need of auxiliary layer for Inception-v4 is clear, and its
improvement is significant. However, on average, in contrast
to ImageNet reported results, Xception has a slightly better
result than Inception-v4-aux. That maybe in part because the
Inception-v4-aux is very deep and requires more data for the
training phase.

TABLE VII
COMPARING UNDERLYING DEEP NEURAL NETWORKS.

Database TW CFD TW CFD TW CFD
Task race2 race2 race3 race3 gender gender
Xception 92 98 77 75 95 75
Xception-no-distortion 80 94 71 70 95 63
Inception-v3 76 98 68 67 73 50
Inception-v4 84 99 53 25 91 62
Inception-v4-aux 85 96 70 84 94 81

Figures 4c-4e illustrate training loss, validation accuracy,
and validation loss of gender classification task using different
models. According to these figures, Xception converges faster
and has better results, and Inception-v3 has the worst results.
Also, it is apparent that adding the auxiliary layer to Inception-
v4 improves it, but it still has slightly lower result than
Xception.

Finally, we compare deep LLP with four baselines. In our
first two baselines, we compare deep LLP with supervised
deep learning; we use Xception with its pre-trained weights,
and train it for 50 epochs using labeled data. For Xception-
wild model, the training data is Twitter evaluation labeled
data in wild conditions and we use CFD dataset with high
quality images to train Xception-HQ model. Our next two
baselines are public face APIs. These APIs can detect multiple
faces in the scene with multiple attributes. The Microsoft face
API6 can identify gender but does not predict race. For race
classification, we use Sightcorp API7, which is the only API
supporting race recognition to the best of our knowledge, but
it is still in the beta phase and does not have very accurate

6https://www.microsoft.com/cognitive-services/en-us/face-api
7https://face.sightcorp.com/

(a) Effect of image distortion on race2

(b) Accuracy of tasks

(c) Gender training loss

(d) Gender validation accuracy

(e) Gender validation loss

Fig. 4. Learning curve of different models.

results. Table VIII compares these baselines to our deep
LLP model using all constraints. Our approach outperforms
Xception-wild, Xception-HQ, and Sightcorp for all tasks and
outperforms the Microsoft API in the wild condition. However,
the latter has the better result for CFD dataset with clean,
frontal images, which our method was not trained on.

C. Co-training result

In this section, we provide experimental results for Algo-
rithm 2. For these results, we initialize algorithm with the



TABLE VIII
COMPARING DEEP LLP MODEL (COUNTY-NAME-SEARCH) WITH

BASELINES.

Database TW CFD TW CFD TW CFD
Task race2 race2 race3 race3 gender gender
Deep LLP 92 98 77 75 95 75
Xception-wild — 93 — 75 — 71
Xception-HQ 85 — 71 — 82 —
Microsoft — — — — 80 90
Sightcorp 24 53 21 46 22 64

TABLE IX
THE CO-TRAINING RESULTS FOR IMAGE CLASSIFICATION. ITERATION 0

REPORTS F1 MEASURE BEFORE RUNNING THE CO-TRAINING ALGORITHM.

Database TW CFD TW CFD TW CFD
Iteration race2 race2 race3 race3 gender gender
0 92 98 77 75 95 75
1 94 98 81 87 95 75
3 94 98 84 82 95 77
5 95 98 81 86 96 80

image view. (It is also possible to initialize it with the textual
view, but we do not expect a significant difference.) In each
iteration, the algorithm creates pseudo-bags, which are used in
the next iteration (by switching the view). In this experiment,
we use the same Twitter unlabeled data (with both image and
text) as unlabeled samples. Thus, we use the same unlabeled
data, but organize them into different bags with different label
proportions for training. For text bags, we use county and
name constraints, and for image bags, we use county, name,
and search constraints.

Table IX presents the result of the co-training algorithm for
image classification. In this table, the first column indicates
the iteration of Algorithm 2, and the first row (iteration zero)
states the F1 measure of deep LLP model without co-training.
This table only shows odd iterations (image classification
steps) of the co-training algorithm. According to this table,
the biggest improvement comes in the first iteration, which
improves absolute F1 of race2 by 2% (an error reduction of
25%), and improves the absolute F1 of race3 by 4% (an error
reduction of 17%).

By applying the co-training algorithm, the most growth
belongs to race3 with an absolute improvement of 7% for
Twitter and 12% for CFD dataset. We believe that is in part
because that the text classifier can detect Spanish words for
Hispanic class and make better pseudo-bags for it. For the
race2 classification task, our co-training algorithm improves
absolute F1 by 3% for the Twitter dataset. The CFD dataset
has already very high F1 measure (98%), and does not have
any growth by co-training steps.

Because the gender classification already has a very high F1
measure (95%) on Twitter, the co-training improves it by only
1%. However, it increases the F1 on the CFD dataset by 5%.
We believe the lower accuracy for the gender classification
task of the CFD database is in part because of the lack of
body features. In the absence of body features, the classifier
often misclassifies a short hair woman as a man or a long

Fig. 5. Examples misclassified by the image classification co-training model.

TABLE X
THE CO-TRAINING RESULTS FOR TEXT CLASSIFICATION. ITERATION 0

REPORTS F1 MEASURE BEFORE RUNNING THE CO-TRAINING ALGORITHM.

Iteration race2 race3 gender Average
0 80 73 83 79
2 90 81 86 86
4 91 83 86 87
6 92 83 85 87

hair man as a woman. Also, because CFD dataset has images
with facial expression too, and our training data does not
consider that, the classifier sometimes misclassifies a woman
with an angry or a fearful expression as a man. The Figure 5
shows some misclassification samples with their predicted
probability. (Images are blurred to protect privacy.)

Table X demonstrates the result of even iterations, text
classification steps, of Algorithm 2. Again, the first row shows
the result of text classification without co-training. According
to this table, the second iteration of co-training has the highest
improvement (7% on average across all tasks). The highest
growth belongs to race2 classes, which improves by 10% in
absolute F1. This improvement is likely because the image
classifier has a very high F1 for this task, and as a result,
it creates accurate pseudo-bags for the text classifier. Finally,
the gender classification grows only 3%, since it has a little
improvement from image classification.

In our final experiment, we select the last iteration for
text classification (6th iteration) and image classification (5th

iteration) of co-training algorithm. Then, we use them on
the Twitter dataset and blend their predictions by using soft
voting. Table XI shows the result. According to this table, the
ensemble improves image classification by average 2%, and
text classification by average 6%. The ensemble produces the
highest F1 for all tasks (except image classification for gender,
which has the same accuracy).

TABLE XI
RESULTS FOR THE ENSEMBLE (SOFT VOTING) METHOD, USING THE FINAL

ITERATIONS (TEXT AND IMAGE) OF THE CO-TRAINING ALGORITHM.

Method race2 race3 gender Average
Text 92 83 85 87
Image 95 81 96 91
Ensemble 96 86 96 93

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced two enhancements to deep
learning methods for image and text classification: (1) a Batch
Averager layer to enable LLP deep learning, and (2) a co-
training method for combining deep LLP models trained on



different views. We found that a deep model that is trained on
population level data using proper constraints is comparable
to traditional supervised learning. This approach decreases the
burden of human annotation and can readily be implemented
with almost every publicly-available deep learning software
packages.

We also found that for applications with two views (im-
age and text) of features, a co-training algorithm leverages
improvement of classification task for both views, and can
be enhanced by an ensemble learning to achieve the highest
precision.

In the future, we will investigate additional co-training
algorithms for LLP, particularly investigating methods for
improving pseudo-bag generation and applying it to a larger
set of unlabeled data.
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