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Abstract

As text classifiers become increasingly used in obser-
vational studies, it is critical to consider not only their
accuracy but also their robustness to changes in the data
distribution. In this paper, we consider the case where
there is a confounding variable Z that influences both
the text features W and the class variable Y . For ex-
ample, a classifier trained to predict the health status
of a user based on their online communications may
be confounded by socioeconomic variables. When the
influence of Z changes from training to testing data,
we find that classifier accuracy can degrade rapidly.
Our approach, based on Pearl’s back-door adjustment,
estimates the underlying effect of a text variable on
the class variable while controlling for the confounding
variable. We conduct an observational study to estimate
the effect of location on dispositional affect, with gen-
der as a confounder. We find that our adjustment results
in more accurate estimates of effect sizes over a range
of possible confounding strengths.

1 Introduction
Emerging cross-disciplinary fields like computational so-
cial science (Lazer et al. 2009) and computational epidemi-
ology (Marathe and Ramakrishnan 2013) have begun per-
forming observational studies in which variables are inferred
using text classification. This includes diverse applications
such as public health surveillance (Dredze 2012), political
science (Dahllöf 2012), crisis response (Verma et al. 2011),
and marketing (Chamlertwat et al. 2012).

To ensure the validity of such studies, one often must
control for possible confounding variables (e.g., socio-
economic status). While this is common practice in social
sciences, there has been little work studying how to con-
trol for confounding variables when the outcome variable
is estimated by a classification algorithm. For example, a
classifier trained to predict the political affiliation of a Twit-
ter user may be confounded by an unobserved age variable.
This may inflate the coefficients of age-related terms in the
classifier (a result of omitted-variable bias (Clarke 2005)).

While identifying and controlling for confounding vari-
ables is central to much of empirical social science, it is
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mostly overlooked in text classification, presumably because
prediction, rather than causal inference, is the primary goal.
Indeed, if we assume that the confounding variable’s influ-
ence is consistent from training to testing data, then there
should be little harm to prediction accuracy. However, this
assumption often does not hold in practice, for at least two
reasons. First, due to the cost of annotation, training sets are
typically quite small, increasing the chance that the corre-
lation between the confounding variable and target variable
varies from training to testing data. Second, and in our view
most importantly, in many domains the relationship between
the confounder and the target variable is likely to shift over
time leading to poor accuracy. For example, diseases may
spread to new populations or a new political candidate may
attract a unique voter demographic. Without properly con-
trolling for confounding variables, studies based on the out-
put of text classifiers are at risk of reaching erroneous con-
clusions.

In this paper, we present a text classification algorithm
based on Pearl’s back-door adjustment (Pearl 2003) to con-
trol for confounding variables. The approach conditions on
the confounding variable at training time, then sums out the
confounding variable at prediction time. We evaluate our ap-
proach on an end-to-end observational study conducted with
Twitter data that estimates the effect of location on dispo-
sitional affect, with gender as a confounder. We compare
the relative risk computed with and without back-door ad-
justment, and find that our approach results in more accu-
rate estimates of effect sizes as the confounding relationship
changes from training to testing data.

2 Related Work
In the social sciences, many methods have been developed to
control for confounders, including matching, stratification,
and regression analysis (Pourhoseingholi, Baghestani, and
Vahedi 2012). Pearl (2003) developed tests for causal graph-
ical models to determine which structures allow one to con-
trol for confounders using covariate adjustment, also known
as the back-door adjustment. As far as we know, we are the
first to use back-door adjustments to improve the robustness
of text classifiers.

In the machine learning community, selection bias has re-
ceived some attention (Zadrozny 2004; Sugiyama, Kraule-
dat, and Müller 2007; Bareinboim, Tian, and Pearl 2014).
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Figure 1: Directed graphical model depicting a confounder
variable Z influencing both observed text features X and
class variable Y .

Selection bias in text classification occurs when the distri-
bution of text features changes from training to testing; i.e.,
Ptrain(X) 6= Ptest(X). Other work has considered the case
where the target distribution P (Y ) changes from training to
testing (Elkan 2001). In the present work, we address the
more challenging case of a changing relationship between
target labels Y and a confounder Z, i.e., Ptrain(Y |Z) 6=
Ptest(Y |Z).

3 Back-door Adjustment for Text Classifiers
Suppose one wishes to estimate the effect size of a determi-
nant variable X on an outcome variable Y , but a randomized
control trial is not possible. In such cases, researchers often
conduct observational studies, in which the effect size is es-
timated from a fixed set of observed X , Y pairs. When doing
so, it is often necessary to adjust for potential confounding
variables Z, which may influence both X and Y . Common
approaches include matching, stratification, and regression
analysis (Pourhoseingholi, Baghestani, and Vahedi 2012).
Without such adjustments, the study validity is threatened
by the possibility that an effect of confounder Z on outcome
Y is misattributed to determinant X .

Conducting valid observational studies can be challeng-
ing even in traditional domains. In this work, we are inter-
ested in conducting observational studies from social me-
dia, which poses further difficulties. The primary challenge
arises from the fact that some or even all of the variables
(X , Y , Z) are not observed, but must be inferred from other
observed text variables W . For example, in the experiments
below, we consider the case where Y is a binary variable rep-
resenting dispositional affect (Cohen and Pressman 2006).
I.e., Yi = 1 indicates that user i has positive disposition, and
Yi = 0 indicates that user i has a negative disposition. We
fit a classifier to a user’s tweets, and use the predictions to
assign Y variables. Our goal is to train this classifier such
that it is robust to changes in the relationship between Y and
confounder Z. That is, while traditional observational stud-
ies focus on the confounding relationship among Z and (X ,
Y ), here we are concerned with the confounding relationship
among Z and (W , Y ).

If we let W be a term vector representing a user’s tweets,
then we wish to fit a classifier P (Y |W ) that has been ad-
justed to reduce the effect of confounder Z. If we have ac-
cess to a sufficient set of confounder variables Z, then it
can be shown that we can estimate the causal effect as fol-

lows (Pearl 2003):

p(y|do(w)) =
∑
z∈Z

p(y|w, z)p(z) (1)

This formula is called covariate adjustment or back-door ad-
justment. The back-door criterion (Pearl 2003) is a graphical
test that determines whether Z is a sufficient set of variables
to estimate the causal effect. This criterion requires that no
node in Z is a descendant of W and that Z blocks every path
between W and Y that contains an arrow pointing to W .

While the back-door adjustment is well-studied in causal
inference problems, in this paper we consider its application
to text classification. We assume we are given a training set
D = {(wi, yi, zi)}ni=1, where each instance consists of a
term feature vector w, a label y, and a covariate variable z.
Our goal is to predict the label yj for some new instance wj ,
while controlling for an unobserved confounder zj . That is,
we assume we observe the confounder at training time, but
not at testing time.

Figure 1 displays the directed graphical model for our ap-
proach. Omitting the confounder Z, it depicts a standard
discriminative approach to text classification, e.g., modeling
P (Y |W ) with a logistic regression classifier conditioned on
the observed term vector x. We assume that the confounder
Z influences both the term vector through P (W |Z) as well
as the target label through P (Y |Z). For example, in a public
health setting, yi may be health status, wi a term vector for
online messages, and zi a demographic variable.

While back-door adjustment is typically presented as a
method of identifying the causal effect of W on Y , here
we are not attempting any causal interpretation. (Indeed, it
would be strange to assert that using a term causes one to
have a class label.) However, Equation 1 provides a frame-
work for making a prediction for Y given W that controls
for Z. In doing so, we can train a classifier that is robust
to the case where P (Y |Z) changes from training to testing
data.

To compute Equation 1 for a test example w, we need
to estimate two quantities from the labeled training data,
p(y|w, z) and p(z). For simplicity, we assume in this pa-
per that wi is a vector of binary features and that yi and zi
are binary scalar variables. For p(z), we use the maximum
likelihood estimate p(z = k) =

∑
i∈D 1[zi=k]

|D| , where 1[·] is
an indicator function. For p(y|w, z), we use L2-regularized
logistic regression. This can be efficiently done by simply
appending two additional features ci,0 and ci,1 to each in-
stance wi representing z = 0 and z = 1. We set the feature
values as follows: for training instance i, we set ci,0 to v1 if
zi = 0 and v0 otherwise; we set ci,1 to v1 if zi = 1 and v0
otherwise. In the default case, we let v1 = 1 and v0 = 0.
To predict for a new instance, we compute posteriors using
Equation 1.

4 Experiments
We investigate the efficacy of our approach by conducting
an observational study of dispositional affect using Twit-
ter data. Dispositional affect indicates the emotional state in
which a person typically responds to a situation (Cohen and



Pressman 2006). At a coarse level, we may think of “op-
timists” as having a positive dispositional affect, and “pes-
simists” as having a negative dispositional affect. Note that
this differs from mood or sentiment in that it is a long-term
personality trait, rather than a temporary emotion. Some
studies have linked dispositional affect to physical and men-
tal health.

In this study, we consider the effect that location has on
dispositional affect, with gender as a potential confounder.
Thus, we have three variables: (1) Outcome variable (Y):
Dispositional affect (Positive or Negative); (2) Determinant
variable (X): Location (we consider two cities, New York
City or Los Angeles); (3) Confounding variable (Z): Gen-
der (Male or Female).

Our goal is to estimate the effect of location (X) on dis-
position (Y ); that is, are New Yorkers more likely to have
a positive disposition than Los Angelenos? We measure the
effect size using relative risk:

RR =
P (Y = Positive|X = NYC)
P (Y = Positive|X = LA)

To build this dataset, we use the Twitter streaming API
to collect tweets with geocoordinates from New York City
(NYC) and Los Angeles (LA). We gather a total of 246,930
tweets for NYC and 218,945 for LA over a four-day period
(June 15th to June 18th, 2015). We attempt to filter bots,
celebrities, and marketing accounts by removing users with
fewer than 10 followers or friends, more than 1,000 fol-
lowers or friends, or more than 5,000 posts. We then label
unique users with their gender using U.S. census name data,
removing ambiguous names. We then collect all the avail-
able tweets (up to 3,200) for each user and represent each
user as a binary unigram vector, using standard tokenization.
Finally, we subsample this collection and keep the tweets
from 6,000 users such that gender and location are uniformly
distributed over the users.

We fit a binary classifier to predict the dispositional af-
fect of a user based on their tweets. Collecting labeled data
for this task is difficult, so for the purposes of generating
the many labeled instances required for this study, we use
a heuristic to annotate users as having positive or negative
affect. To do so, we annotate individual tweets as positive if
they contain one of 21 positive emoticons/emojis, and nega-
tive if they contain one of 15 sad emoticons/emojis. Emoti-
cons have been used in prior work as a way of generating
weakly labeled sentiment classification data (Agarwal et al.
2011). (We remove emoticons from the feature vector used
by the classifier.)

To annotate a user’s dispositional affect, we compute the
number of negative tweets divided by the number of posi-
tive and negative tweets; that is, the proportion of sentiment-
bearing tweets that are negative. To obtain a nearly equal
number of positive and negative affect users, we labeled
users with more than 20% negative tweets as having neg-
ative affect, and the remainder were labeled as positive af-
fect. (Positive emoticons are used much more frequently
than negative emoticons overall.)

We conducted experiments in which the relationship be-
tween the confounder Z and the class variable Y varies

between the training and testing set. To control this rela-
tionship, we sample train/test sets with different P (Y |Z)
distributions. We assume we have labeled training datasets
Dtrain, Dtest, with elements {(wi, yi, zi)}, where yi and zi
are binary variables. We introduce a bias parameter P (y =
1|z = 1) = b; by definition, P (y = 0|z = 1) = 1 − b.
For each experiment, we sample without replacement from
each set D′

train ⊆ Dtrain, D′
test ⊆ Dtest. To simulate a

change in P (Y |Z), we use different bias terms for train-
ing and testing, btrain, btest. We thus sample according to
the following constraints: Ptrain(y = 1|z = 1) = btrain;
Ptest(y = 1|z = 1) = btest; Ptrain(Y ) = Ptest(Y ). The
latter constraint attempts to isolate the effect of P (Y |Z) on
results, while controlling for the class prior P (Y ). We em-
phasize that we do not alter any of the actual labels in the
data; we merely sample instances to meet these constraints.

We make the bias value b vary from 0.1 to 0.9 (i.e. from
10% to 90% of bias) for both the training and the testing
sets and we compare the accuracy of several classification
models. For each btrain, btest pair, we sample 5 train/test
splits and report the average accuracy.

In addition to accuracy, we also compare the estimated
relative risk using back-door adjustment with that of tradi-
tional logistic regression. We use the labeled data in the test-
ing set to compute the “true” relative risk, then compare the
quality of the results of each method. For all experiments,
we fix the true relative risk to be 1.1 (that is, New Yorkers
are somewhat more likely than Los Angelenos to have a pos-
itive disposition). We then classify all users in the test set to
compute the estimated relative risk.

5 Results
Figure 2(a) shows testing accuracy of disposition classifi-
cation as the difference between training and testing bias
varies. To determine the x-axis, we compute the Pearson
correlation between Z and Y , and report the difference be-
tween the testing and training correlations. This figure indi-
cates that back-door adjustment results in more robust clas-
sification in the presence of confounding bias. This is most
pronounced in extreme shifts in the confounding relation-
ship, where the classification accuracy of LR becomes much
worse than random. Note, however, that this comes at a
cost of slightly lower classification accuracy when there is
no change in confounding relationship between training and
testing sets.

Figure 2(b) shows how the estimated relative risk values
of the resulting classifiers compare with the “true” values
set by the experiment. That is, this figure shows the effect
that the confounding bias has on the final conclusions of the
study. We can see that across a wide range of values, back-
door adjustment produces more reliable estimates of the ef-
fect of location on disposition. (The periodic nature of the
LR curve is in part due to shifts between positive and nega-
tive correlations between Y and Z, which we have not sep-
arated since we only consider the correlation difference.) It
is notable that even when overall accuracy is fairly low, the
relative risk can be estimated fairly well if the confounding
variables have been accounted for properly.
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Figure 2: Experimental results: (a) dispositional affect classification accuracy as the strength of the confounder (gender) varies
between training and testing set; (b) true and estimated relative risk values of the effect of location on disposition. In both cases,
the classifier using back-door adjustment (BA) results in more robust classification and effect size estimates than standard
logistic regression (LR).

6 Conclusion
In this paper, we have proposed an efficient and effective
method of using back-door adjustment to control for con-
founders in text classification. We have found such adjust-
ment to result in more accurate estimates effect sizes in
web-based observational studies, thereby improving the va-
lidity of studies conducted using such noisy data sources. In
our experiments, we have assumed that we observe the con-
founding variable at training time, and that the confounder is
a single binary variable. In future work, we will consider the
case where we only have a noisy estimate of Z at training
time (Kuroki and Pearl 2014), as well as the case where Z is
a vector of variables.
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