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Abstract
As text classifiers become increasingly used in real-time
applications, it is critical to consider not only their ac-
curacy but also their robustness to changes in the data
distribution. In this paper, we consider the case where
there is a confounding variable Z that influences both
the text features X and the class variable Y . For ex-
ample, a classifier trained to predict the health status
of a user based on their online communications may
be confounded by socioeconomic variables. When the
influence of Z changes from training to testing data,
we find that classifier accuracy can degrade rapidly.
Our approach, based on Pearl’s back-door adjustment,
estimates the underlying effect of a text variable on
the class variable while controlling for the confound-
ing variable. Although our goal is prediction, not causal
inference, we find that such adjustments are essential
to building text classifiers that are robust to confound-
ing variables. On three diverse text classifications tasks,
we find that covariate adjustment results in higher ac-
curacy than competing baselines over a range of con-
founding relationships (e.g., in one setting, accuracy im-
proves from 60% to 81%).

1 Introduction
While researchers have investigated automatic text classi-
fication algorithms for over fifty years (Maron 1961), they
have mostly applied them to topical categorization of docu-
ments. More recently, however, emerging cross-disciplinary
fields like computational social science (Lazer et al. 2009)
and computational epidemiology (Marathe and Ramakrish-
nan 2013) have created new demand for text classification in
areas such as public health surveillance (Dredze 2012), po-
litical science (Dahllöf 2012), crisis response (Verma et al.
2011), and marketing (Chamlertwat et al. 2012).

These new domains are notably different from those stud-
ied historically; the objects to be classified are often peo-
ple and their online writings, and the predicted labels may
be health status, political affiliation, or personality type. De-
spite these differences, standard supervised classification al-
gorithms are often used with no customization.

However, to ensure the validity of studies based on the
output of text classification, these new domains require clas-
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sifiers that are robust to confounding variables. Confound-
ing variables appear in text classification when a variable is
correlated with both the input variables (text features) and
the output variable (class label). For example, a classifier
trained to predict the political affiliation of a Twitter user
may be confounded by an unobserved age variable. This
may inflate the coefficients of age-related terms in the clas-
sifier (a result of omitted-variable bias (Clarke 2005)).

While identifying and controlling for confounding vari-
ables is central to much of empirical social science, it is
mostly overlooked in text classification, presumably because
prediction, rather than causal inference, is the primary goal.
Indeed, if we assume that the confounding variable’s influ-
ence is consistent from training to testing data, then there
should be little harm to prediction accuracy. However, this
assumption often does not hold in practice, for at least two
reasons. First, due to the cost of annotation, training sets are
typically quite small, increasing the chance that the corre-
lation between the confounding variable and target variable
varies from training to testing data. Second, and in our view
most importantly, in many domains the relationship between
the confounder and the target variable is likely to shift over
time, leading to poor accuracy. For example, diseases may
spread to new populations or a new political candidate may
attract a unique voter demographic. Without properly con-
trolling for confounding variables, studies based on the out-
put of text classifiers are at risk of reaching erroneous con-
clusions.

In this paper, we present a text classification algorithm
based on Pearl’s back-door adjustment (Pearl 2003) to con-
trol for confounding variables. The approach conditions on
the confounding variable at training time, then sums out the
confounding variable at prediction time. We further investi-
gate a parameterized version of the approach that allows us
to modulate the strength of the desired adjustment.

We evaluate our approach on three diverse classification
tasks: predicting the location of a Twitter user (confounded
by gender), the political affiliation of a parliament mem-
ber (confounded by majority party status), and the senti-
ment of a movie review (confounded by genre). We find
that as the mismatch between training and testing sets in-
creases with respect to the confounder, accuracy can decline
precipitously, in one dataset from 85% to 60%. By properly
controlling for confounders, our approach is able to reliably



improve the robustness of the classifier, maintaining high ac-
curacy even in extreme cases where the correlation between
the confounder and target variable is reversed from training
to testing sets.

2 Related Work
In the social sciences, many methods have been devel-
oped to control for confounders, including matching, strat-
ification, and regression analysis (Rosenbaum and Rubin
1983; Pourhoseingholi, Baghestani, and Vahedi 2012). Pearl
(2003) developed tests for causal graphical models to deter-
mine which structures allow one to control for confounders
using covariate adjustment, also known as the back-door ad-
justment. As far as we know, we are the first to use back-door
adjustments to improve the robustness of text classifiers.

In the machine learning community, selection bias has re-
ceived some attention (Zadrozny 2004; Sugiyama, Kraule-
dat, and Müller 2007; Bareinboim, Tian, and Pearl 2014).
Selection bias in text classification occurs when the distri-
bution of text features changes from training to testing; i.e.,
Ptrain(X) 6= Ptest(X). Other work has considered the case
where the target distribution P (Y ) changes from training to
testing (Elkan 2001). In the present work, we address the
more challenging case of a changing relationship between
target labels Y and a confounder Z, i.e., Ptrain(Y |Z) 6=
Ptest(Y |Z).

Additionally, there has been recent interest in “fairness” in
machine learning (Zemel et al. 2013; Hajian and Domingo-
Ferrer 2013) — for example, ensuring that a classifier’s pre-
dictions are uniformly distributed across population groups.
However, we do not want to optimize fairness in our do-
main; e.g., we expect that health status does vary by de-
mographics. Other approaches attempt to remove features
that introduce bias (Pedreshi, Ruggieri, and Turini 2008;
Fukuchi, Sakuma, and Kamishima 2013); however, exist-
ing approaches are not practical in text domains with tens of
thousands of features. Thus, as far as we know, our proposed
approach is the first large-scale investigation of methods to
reduce the effect of confounders in text classifiers.

Volkova, Wilson, and Yarowsky (2013) investigate how
gender influences sentiment classification on Twitter, finding
that gender-specific sentiment lexicons can improve classi-
fication accuracy. In contrast to that work, we do not as-
sume that the confounding variable (in this case, gender) is
observed at test time. Furthermore, while their work is tai-
lored to sentiment classification, here we propose a general-
purpose solution, evaluated on three different classification
tasks.

3 Back-door Adjustment for Text Classifiers
Suppose one wishes to estimate the causal effect of a vari-
able X on a variable Y , but a randomized control trial is not
possible. If we have access to a sufficient set of confounder
variables Z, then it can be shown that we can estimate the
causal effect as follows (Pearl 2003):

p(y|do(x)) =
∑
z∈Z

p(y|x, z)p(z) (1)

Z	

X Y	
k	

confounder	

class label	term vector	

Figure 1: Directed graphical model depicting a confounder
variable Z influencing both observed text features X and
class variable Y .

This formula is called covariate adjustment or back-door ad-
justment. The back-door criterion (Pearl 2003) is a graphical
test that determines whether Z is a sufficient set of variables
to estimate the causal effect. This criterion requires that no
node in Z is a descendant of X and that Z blocks every path
between X and Y that contains an arrow pointing to X . No-
tice p(y|x) 6= p(y|do(x)): this do-notation is used in causal
inference to indicate that an intervention has set X = x.

While the back-door adjustment is well-studied in causal
inference problems, in this paper we consider its application
to text classification. We assume we are given a training set
D = {(xi, yi, zi)}ni=1, where each instance consists of a
term feature vector x, a label y, and a covariate variable z.
Our goal is to predict the label yj for some new instance xj ,
while controlling for an unobserved confounder zj . That is,
we assume we observe the confounder at training time, but
not at testing time.

Figure 1 displays the directed graphical model for our ap-
proach. Omitting the confounder Z, it depicts a standard
discriminative approach to text classification, e.g., modeling
P (Y |X) with a logistic regression classifier conditioned on
the observed term vector x. We assume that the confounder
Z influences both the term vector through P (X|Z) as well
as the target label through P (Y |Z). For example, in a public
health setting, yi may be health status, xi a term vector for
online messages, and zi a demographic variable. The struc-
ture of this model ensures that Z meets the back-door crite-
rion for adjustment.

While back-door adjustment is typically presented as a
method of identifying the causal effect of X on Y , here
we are not attempting any causal interpretation. (Indeed, it
would be strange to assert that using a term causes one to
have a class label.) However, Equation 1 provides a frame-
work for making a prediction for Y givenX that controls for
Z. In doing so, we can train a classifier that is robust to the
case where P (Y |Z) changes from training to testing data.

We use Equation 1 to classify test example x. We assume
that z is observed for training examples, but not for testing
examples. Thus, we need to estimate two quantities from the
labeled training data, p(y|x, z) and p(z). For simplicity, we
assume in this paper that xi is a vector of binary features
and that yi and zi are binary variables. For p(z), we use the



maximum likelihood estimate:

p(z = k) =

∑
i∈D 1[zi = k]

|D|

where 1[·] is an indicator function. For p(y|x, z), we use
L2-regularized logistic regression, described in more detail
below.

3.1 Tuning the Adjustment Strength

From an implementation perspective, the approach above
is rather straightforward: p(z) is computed using the max-
imum likelihood estimate above. We compute p(y|x, z) effi-
ciently by simply appending two additional features ci,0 and
ci,1 to each instance xi representing z = 0 and z = 1. The
first (resp. second) feature is set to v1 if zi = 0 (resp. zi = 1)
and the second feature (resp. first) is set to 0. In the default
case, we let v1 = 1 but we revisit this decision in the next
section. To predict for a new instance, we compute posteri-
ors using Equation 1. Here, we give some intuition as to why
we expect this approach to help, as well as a method to allow
the researcher to modulate the strength of the adjustment.

Given that the term vector x often contains thousands of
variables, it may seem surprising that adding two additional
features for z can have much of an impact on classifica-
tion. One way to understand this is to consider the problem
of weight undertraining (Sutton, Sindelar, and McCallum
2006) in regularized logistic regression. Given the thousands
of correlated and overlapping variables used in text classifi-
cation, optimizing a logistic regression model involves sub-
tle tradeoffs among coefficients of related variables, as well
as with the magnitude of the coefficients as determined by
the L2 regularization penalty. In such settings, it has been
observed that the presence of a small number of highly pre-
dictive features can lead to smaller than desired coefficients
for less predictive features. Sutton et al. reference as an ex-
ample the autonomous driving system of Pomerleau (1996),
in which the presence of a prominent ditch on the side of the
road at training time (a highly predictive feature) dominated
the model, leading to poor performance in settings where the
ditch was not present.

Here, we use undertraining to our advantage. By introduc-
ing features for z (a potentially highly predictive feature),
we deliberately undertrain the coefficients for terms in x.
In particular, given the objective function of L2-regularized
logistic regression, we expect that undertraining will most
effect those terms that are correlated with z. For example, if
z is gender, then we expect gender-indicative terms to have
relatively lower magnitude coefficients using back-door ad-
justment than other terms. This interpretation allows us to
formulate a method to tune the strength of the back-door
adjustment. First, we re-write the L2-regularized logistic re-
gression log-likelihood function, distinguishing between co-
efficients for the term vector θx and coefficients for the con-
founders θz , letting θ be the concatenation of θx and θz:

L(D, θ) =
∑
i∈D

log pθ(yi|xi, zi)−λx
∑
k

(θxk)
2

−λz
∑
k

(θzk)
2

where the terms λx and λz control the regularization
strength of the term coefficients and confounder coefficients,
respectively. A default implementation would set λx =
λz = 1. However, by setting λz < λx, we can reduce the
penalty for the magnitude of the confounder coefficients θz .
This allows the coefficients θz to play a larger role in clas-
sification decisions than θx, thereby increasing the amount
of undertraining in θx. Our implementation achieves this ef-
fect by increasing the confounder feature value for v1 while
holding the other feature value to 0. Because we do not stan-
dardize the feature matrix, inflating the value of v1 while
keeping the same values of x encourages smaller values for
θz , effectively placing relatively smaller L2 penalties on θz
than on θx.

4 Experiments
Using three real-world datasets, we conducted experiments
in which the relationship between the confounder Z and the
class variable Y varies between the training and testing set.
We consider two scenarios, one in which we directly control
the discrepancy between training and testing, and another
in which the relationship between Z and Y is suddenly re-
versed.

To sample train/test sets with different P (Y |Z) distribu-
tions, we assume we have labeled datasets Dtrain, Dtest,
with elements {(xi, yi, zi)}, where yi and zi are binary vari-
ables. We introduce a bias parameter P (y = 1|z = 1) = b;
by definition, P (y = 0|z = 1) = 1 − b. For each ex-
periment, we sample without replacement from each set
D′train ⊆ Dtrain, D′test ⊆ Dtest. To simulate a change
in P (Y |Z), we use different bias terms for training and test-
ing, btrain, btest. We thus sample according to the following
constraints:
• Ptrain(y = 1|z = 1) = btrain;
• Ptest(y = 1|z = 1) = btest;
• Ptrain(Y ) = Ptest(Y );
• Ptrain(Z) = Ptest(Z).
The last two constraints are to isolate the effect of changes
to P (Y |Z). Thus, we fix P (Y ) and P (Z), but vary P (Y |Z)
from training to testing data. We emphasize that we do not
alter any of the actual labels in the data; we merely sample
instances to meet these constraints.

We evaluate our approach on three different text classifi-
cation datasets, each of which has different properties rel-
ative to the distribution of the label classes and the con-
founder classes.

Twitter Dataset The task here is to predict the location of
a Twitter user from their messages, where gender is a po-
tential confounder. To build this dataset, we use the Twitter
streaming API to collect tweets with geocoordinates from



New York City (NYC) and Los Angeles (LA). We gather a
total of 246,930 tweets for NYC and 218,945 for LA over a
four-day period (June 15th to June 18th, 2015). We attempt
to filter bots, celebrities, and marketing accounts by remov-
ing users with fewer than 10 followers or friends, more than
1,000 followers or friends, or more than 5,000 posts. We
then label unique users with their gender using U.S. cen-
sus name data, removing ambiguous names. We then collect
all the available tweets (up to 3,200) for each user and rep-
resent each user as a binary unigram vector, using standard
tokenization. Finally, we subsample this collection and keep
the tweets from 6,000 users such that gender and location
are uniformly distributed over the users.

For this paper, we predict location with gender as the con-
founding variable.1 Thus, we let yi = 1 indicate NYC and
zi = 1 indicate Male. Due to how we build this dataset, the
data is evenly distributed across the four possible y/z pairs.
We refer to this as the Twitter dataset.

IMDb Dataset In this task, we predict the sentiment of a
movie review confounded by movie genre using the IMDb
data from Maas et al. (2011). It contains 50,000 movie re-
views from IMDb labeled with positive or negative sen-
timent. We remove English stopwords, terms that appear
fewer than 10 times, and we use a binary vector to repre-
sent the presence or absence of features.

We consider as a confounder whether the movie is of the
“horror” genre, as determined by the IMDb classification.
Thus, we let zi = 1 for horror movies, and zi = 0 oth-
erwise. Contrary to the Twitter dataset, this data is unevenly
distributed amongst the four possible label/confounder pairs.
Roughly 18% of movies are horror movies, and 5% of re-
views with positive sentiment are of horror movies. We refer
to this as the IMDb dataset.

Canadian Parliament Dataset Our final task is to predict
the party affiliation of a member of parliament based on the
text of their floor speeches, which is used by political sci-
entists to quantify the partisianship of political debates. The
confounder here is whether the speaker’s party is the gov-
erning or opposition party.

We obtain data on the 36th and 39th Canadian Parliaments
as studied previously (Hirst, Riabinin, and Graham 2010;
Dahllöf 2012). For each parliament, we have the list of
speakers, and for each speaker, we have her political affil-
iation (simplified to Liberal and Conservative as in Dahllöf
(2012)), the text of her speeches, and whether she is from
the governing or opposition party. It has been observed in
Dahllöf (2012) that governing party is a confounding vari-
able for this task. Thus, we set the confounding variable zi
to 1 if speaker i is a member of the governing party or 0 oth-
erwise. We set yi = 1 for Liberal members and y = 0 for
Conservative members.

Unlike the prior two tasks, we do not subsample the data
to simulate shifts in P (Y |Z). Instead, because the govern-
ing party shifted from Liberal to Conservative from the 36th
to 39th Parliament, we have a natural dataset to study how

1We also predicted gender with location as the confounder and
obtained similar results as those below; we omit these for brevity.

a sudden shift in the confounding variable affects accuracy.
We initialize Dtrain to be all data from the 36th Parliament.
Then, we incrementally add to Dtrain additional instances
from the 39th Parliament. When each additional instance
is added, we refit our classification model and predict on
a held-out set in the 39th Parliament. Thus, we report the
learning curve showing how each method performs as the
training data become more similar to the testing data.

Note that initially this task is more difficult than the
prior two, since Dtrain begins only with examples where
P (z = 1|y = 1) = 1 (because all Liberal members are also
members of the governing party in the 36th Parliament). For
the testing data, P (z = 1|y = 1) = 0, since the Conserva-
tives have become the governing party. We refer to this as
the Parliament dataset.
Experimental settings: For Twitter and IMDb, we simu-
late shifts in train/test confounding as described above. We
make the bias value b vary from 0.1 to 0.9 (i.e. from 10%
to 90% of bias) for both the training and the testing sets and
we compare the accuracy of several classification models.
For each btrain, btest pair, we sample 5 train/test splits and
report the average accuracy. For Parliament, we use 5-fold
cross-validation on the 39th Parliament; each fold reserves
a different 20% of the 39th Parliament for testing. The re-
maining instances are added to the 36th Parliament data in-
crementally to construct a learning curve.

4.1 Models
We compare the following models:

Logistic Regression (LR) Our primary baseline is a stan-
dard L2-regularized logistic regression classifier that does
not do any adjustment for the confounder. It simply mod-
els P (Y |X).

Back-door Adjustment (BA) The approach we have advo-
cated in this paper. We also consider the model that makes
a stronger covariate adjustment by setting the confound-
ing feature value v1 = 10, which we denote BAZ10.

Subsampling (LRS) A straightforward way to remove bias
at training time is to select a subsample of the data such
that P (Y, Z) is uniformly distributed. I.e., if nij is the
number of instances where y = i and z = j, then we sub-
sample such that n00 = n01 = n10 = n11. This approach
unfortunately can discard many instances when there is a
strong confounding bias, and furthermore scales poorly as
the number of confounders grow.

Matching (M) Matching is commonly used to estimate
causal effects from observational studies (Rosenbaum and
Rubin 1983; Dehejia and Wahba 2002; Rubin 2006). To
apply these ideas to text classification, we construct a pair-
wise classification task as follows: for each training in-
stance with y = i and z = j, we sample another train-
ing instance where y 6= i and z = j. For example, for
each horror movie with positive sentiment, we match an-
other horror movie with negative sentiment. We then fit a
logistic regression classifier optimized to discriminate be-
tween each pair of samples, using a learning-to-rank ob-
jective (Li, Wu, and Burges 2007).
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(b) Twitter accuracy averaged over training biases for a
given testing bias.
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(c) IMDb accuracy as the testing and training sets differ
with respect to P (Y |Z).
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given testing bias.
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(e) Canadian Parliament results.
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(f) Percentage of features displaying Simpson’s paradox.

Figure 2: Experimental results. Error bars show the standard error of the mean.

Sum out (SO) In this approach, we model the joint distri-
bution of P (Y, Z|X). We use a logistic regression classi-
fier where the labels are in the product space of Y and Z

(i.e., labels are {(y = 0, z = 0), (y = 0, z = 1), . . .}). At
testing time, we sum out over possible assignments to z
to compute the posterior distribution for y.



5 Results
For the Twitter and IMDb tasks, we construct two plots
each. For the first plots (Figures 2(a) and 2(c)), we show
testing accuracy as the difference between training and test-
ing bias varies. To determine the x-axis, we compute the
Pearson correlation between Z and Y , and report the differ-
ence between the testing and training correlations. In the
second set of plots (Figures 2(b) and 2(d)), the x-axis is the
testing bias btest; the y-axis is the testing accuracy averag-
ing over all possible training biases btrain. Thus, the corre-
lation difference graphs display worst-case scenarios where
the training/testing sets vary significantly; whereas the test
bias graphs show the average-case accuracy.

5.1 Twitter Experiment
In Figures 2(a) and 2(b), the best method in the extreme ar-
eas are BAZ10 and LRS. They outperform all the other clas-
sifiers in the interval [−1.6,−0.6]∪ [0.6, 1.6]: they are about
15 points better compared to BA, about 20 compared to LR
and M, and up to 30 points better than SO. Outside of this
interval – in the middle area – BAZ10 is only bested by BA
and LR. Moreover, the maximal accuracy loss of BAZ10 to
the other classifiers is approximately 2 points when the cor-
relation difference is 0. This suggests that BAZ10 is signifi-
cantly more robust to confounders than LR, while only sacri-
ficing a minimal amount of accuracy when the confounders
have little impact. In Figure 2(b), the average accuracy over
all the training bias is plotted for every testing bias. BA and
BAZ10 are overall more accurate than every other method.
SO does poorly overall, with an accuracy between 4 and 8
points less than the other methods.

To understand why BAZ10 is more accurate and more ro-
bust than the other methods, we plot the coefficients of LR,
BA, and BAZ10 classifiers when the bias is 0.9 (i.e. 90%
of the New Yorkers are men). In Figure 3, we display these
coefficients for the ten features that are most predictive of
the class label according to the χ2 statistic (top) and the ten
features that are most predictive of the confounding variable
(bottom). The weights of location-related features (top) de-
crease a little in the back-door adjustment methods but stay
relatively important. On the contrary, the weights of gender-
related features (bottom) are moving very close to zero in
the back-door adjustment methods. Even though these fea-
tures already have low coefficients in logistic regression, it is
important to completely remove them from the classification
process so it is not biased by gender. Note that using BAZ10
instead of BA has more of an impact on the gender-related
features. These results support the intuition in Section 3 that
back-door adjustment will impact features correlated with
the confounder the most through under-training.

As another way of considering the effect of BA, recall
the notion of Simpson’s paradox (Simpson 1951). In causal
studies, Simpson’s paradox arises when the effect ofX on Y
is found to be positive in the general population, but nega-
tive in each subpopulation defined by the confounder vari-
able Z. For example, suppose smoking is found to cause
cancer in the general population, but is found not to cause
cancer when considering male and female populations sepa-
rately. For a given classifier, we can compute the number of
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Figure 3: Fit coefficients for the LR, BA, and BAZ10 clas-
sifiers with a bias of 0.9 in the Twitter experiment. The top
panel shows the 10 features most correlated with the label
(location), and the bottom panel shows the 10 features most
correlated with the confounder (gender). BAZ10 tends to
drive coefficients associated with the confounder to 0.

text features that exhibit Simpson’s paradox by identifying
coefficients that have one sign when fit to all the data, but
have the opposite sign when fit separately to the instances
of data where z = 0 and again for instances where z = 1.
That is, we identify coefficients that are predictive of y = 1
when fit in aggregate, but are predictive of y = 0 when
fit in each subgroup (and vice versa). Figure 2(f) plots the
percentage of features that display Simpson’s paradox given
the strength of the bias in the fitted data. The Twitter data
contain approximately 22K features. In the BAZ10 case, the
number of features displaying Simpson’s paradox stays rela-
tively constant; whereas it grows quickly when the bias gets
to the extreme values for the other methods. (We observed
similar results on IMDb data.)

From Figures 3 and 2(f), we conclude that there are two
ways in which back-door adjustment improves robustness:
(1) by driving to zero coefficients for terms correlated with
the confounder Z; (2) by correcting the sign of coefficients
that are predictive of Y but have been misled by the con-
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Figure 4: Effect of adjustment strength v1 on confounder
feature coefficients c0, c1 and accuracy on Twitter dataset.

founder.
Finally, Figure 4 displays the effect of the v1 parame-

ter in the BA approach, which controls the strength of the
back-door adjustment. This figure shows the change of the
scaled coefficients in absolute value for c0 and c1 (dashed
lines) as well as the accuracy (solid line) when v1 is in-
creasing in Twitter. These results are for the case where
the bias difference in the training and the testing set is large
(|train bias− test bias| > 1.2). We observe that the accuracy
is low and stable when v1 is less than 10−1. It then increases
and begins to plateau starting at v1 = 10. For this dataset,
the accuracy gain is a considerable 15 points between the
two plateaus. While here we have considered v1 = 10 in all
experiments, cross-validation may be used to select a value
that produces the desired robustness level for a given task.

5.2 IMDb Experiment
Figures 2(c) and Figure 2(d) display the results for IMDb
data. BA and BAZ10 again appear the most robust to con-
founding bias. The other methods perform well, except for
LRS, which produces results around ten points less than the
other methods (for clarity, we have omitted LRS from these
figures). We attribute this poor performance to the fact that
the distribution of y/z variables is much more skewed here
than in Twitter, leading LRS to be fit on only a small per-
cent of the training data each time. This also explains why
the change in overall accuracy is not as extreme as in the
Twitter experiments: the confounding effect is minimized
because there are relatively few horror movies in the data.

For the IMDB and Twitter experiments, we additionally
compute a paired t-test to compare BAZ10 and LR for each
value of the correlation difference (e.g., the x-axis in Figures
2(a) and 2(c)). We find that in 19 cases, BAZ10 outperforms
LR; in 8 cases, LR outperforms BAZ10; and in 5 cases the
results are not significantly different (p < 0.01). As the fig-
ures indicate, when the testing data are very similar to the
training data with respect to the confounder, BAZ10 is com-
parable or slightly worse than LR; however, when the test-
ing data differs, BAZ10 outperforms LR, sometimes by a
substantial margin (e.g., 20% absolute accuracy increase in

Twitter).

5.3 Canadian Parliament Experiment
Finally, we consider the Canadian Parliament task, in which
the confounder relationship flips suddenly, and we report the
lag required for the methods to recover from this shift. Fig-
ure 2(e) shows the accuracy for five models when we grad-
ually add instances from the 39th Parliament to data from
the 36th and predict on separate instances from the 39th Par-
liament using 5-fold cross-validation. Note that we do not
display the BA model in this figure as it has nearly the same
result as BAZ10.

Initially – with 5 instances from the 39th parliament –
LRS surpasses the other models by five to fifteen percent;
however, BAZ10 quickly surpasses LRS once 58 instances
from the 39th Parliament are obtained. In the end, SO and
BAZ10 have comparable accuracies that are 1% higher than
LRS. LR and M exhibit the slowest learning rates, although
LR does eventually reach the same accuracy as LRS.

This experiment suggests that when there is an extreme
and sudden shift in the confounder’s influence, it may be best
to simply discard much of the data from prior to that shift
(e.g., the LRS approach). However, once a modest number
of instances are available after the shift, BAZ10 is able to
make adjustment to overcome the confounding bias.

6 Conclusion
In this paper, we have proposed an efficient and effec-
tive method of using back-door adjustment to control for
confounders in text classification. Across three different
datasets, we have found that back-door adjustment improves
classifier robustness when the confounding relation varies
from training to testing data, and that an additional param-
eter can be used to strengthen the adjustment for cases of
extreme confounding bias. We have found that back-door
adjustment both reduces the magnitude of coefficients cor-
related with the confounder, as well as corrects the sign of
coefficients associated with the target class label.

In our experiments, we have assumed that we observe
the confounding variable at training time, and that the con-
founder is a single binary variable. In future work, we will
consider the case where we only have a noisy estimate of Z
at training time (Kuroki and Pearl 2014), as well as the case
where Z is a vector of variables.
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