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Abstract

As statistical classifiers become integrated into real-world ap-
plications, it is important to consider not only their accuracy
but also their robustness to changes in the data distribution. In
this paper, we consider the case where there is an unobserved
confounding variable z that influences both the features x and
the class variable y. When the influence of z changes from
training to testing data, we find that the classifier accuracy
can degrade rapidly. In our approach, we assume that we can
predict the value of z at training time with some error. The
prediction for z is then fed to Pearl’s back-door adjustment
to build our model. Because of the attenuation bias caused by
measurement error in z, standard approaches to controlling
for z are ineffective. In response, we propose a method to
properly control for the influence of z by first estimating its
relationship with the class variable y, then updating predic-
tions for z to match that estimated relationship. By adjusting
the influence of z, we show that we can build a model that
exceeds competing baselines on accuracy as well as on ro-
bustness over a range of confounding relationships.

1 Introduction1

Statistical classifiers have become widely used to inform im-
portant decisions such as whether to approve a loan (Hand
and Henley 1997), hire a job candidate (Miller 2015), or re-
lease a criminal defendant on bond (Monahan and Skeem
2016). Given the consequences of such decisions, it is crit-
ical that we can remove sources of systematic bias in clas-
sification algorithms. One important type of classifier bias
arises from confounding variables. A confounder z is a vari-
able that is correlated both with the input variables (or fea-
tures) x and the target variable (or label) y of a classifier.
When z is not included in the model, the true relationship
between x and y can be improperly estimated; in the so-
cial sciences – and originally in econometrics – this is called
omitted variable bias (King, Keohane, and Verba 1994).

Confounding variables can be particularly problematic in
high-dimensional settings, such as text classification, where
models may contain thousands or millions of parameters,
making manual inspection of models impractical. The com-
mon use of text classification to derive variables in computa-

1For an expanded version of this paper, replication code,
and data, please see http://arxiv.org/abs/1703.01671 and
https://github.com/tapilab/icwsm-2017-confounds

tional social science applications (Lazer et al. 2009) further
adds to the urgency of the problem. In recent work (Lan-
deiro and Culotta 2016), we proposed a text classification al-
gorithm that used Pearl’s back-door adjustment (Pearl 2003)
to control for an observed confounding variable. It was
found that this approach produces classifiers that are sig-
nificantly more robust to shifts in the relationship between
confounder z and class label y from training to testing data.
However, an important limitation of this prior work is that
it assumes that a training set is available in which every in-
stance is annotated for both class label y and confounder
z. This is problematic because there are many confounders
we may want to control for (e.g., income, age, gender,
race/ethnicity) that are often rarely available and difficult for
humans to label, particularly in addition to the primary la-
bel y. A natural solution is to build statistical classifiers for
confounders z, and use the predicted values of z to control
for these confounders. However, the measurement error of
z introduces attenuation bias in the back-door adjustment,
resulting in classifiers that are still confounded by z.

In this paper, we present a classification algorithm based
on Pearl’s back-door adjustment to control for an unob-
served confounding variable. Our approach assumes we
have a preliminary classifier that can predict the value of
the confounder z, and that we have an estimate of the er-
ror rate of this z-classifier. We offer two methods to adjust
for the mislabeled z to improve the effectiveness of back-
door adjustment. A straightforward approach is to remove
training instances for which the confidence of the predicted
label for z is too low. While we do find this approach can
reduce attenuation bias, it must discard many training exam-
ples, degrading the y-classifier. Our second approach instead
uses the error rate of the z-classifier to estimate the corre-
lation between y and z in the training set. The assignment
to z is then optimized to match this estimated correlation,
while also maximizing classification accuracy. We compare
our methods on a real-world text classification task: predict-
ing the location of a Twitter user, based on their tweets and
confounded by gender. The resulting model exhibits signif-
icant improvements in both accuracy and robustness, with
some settings producing similar results as fully-observed
back-door adjustment.
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2 Methods
In this section, we first review prior work using back-door
adjustment to control for observed confounders in text clas-
sification. We then introduce two methods for applying
back-door adjustments when the confounder is unobserved
at training time and must instead be predicted by a separate
classifier.

Adjusting for observed confounders

Suppose we wish to estimate the causal effect of a vari-
able x on a variable y when a randomized controlled trial
is not possible. If a sufficient set of confounding variables
z is available, one can use the well-studied back-door ad-
justment equation (Pearl 2003) as follows: p(y|do(x)) =∑

z p(y|x, z)× p(z). Notice p(y|x) �= p(y|do(x)): this do-
notation is used in causal inference to indicate that an inter-
vention has been made on x.

Text classifiers estimate the distribution p(y|x), the prob-
ability of a class label y given a term vector x, from labeled
training data. To apply back-door adjustment to text clas-
sification, we assume that there is a confounder z that in-
fluences both the term vector x through p(x|z) as well as
the target label through p(y|z). Of course, the goal of text
classification is not causal inference (a term vector x does
not “cause” label y). However, we have found that by con-
trolling for a confounder z, the resulting classifier is robust
to cases in which the relationship between z and y changes
between the training and testing data (Landeiro and Culotta
2016).

The approach works as follows: Given a typical training
set D = {(xi, yi)}, we augment the training set by includ-
ing z as a feature for each instance: D′ = {(xi, yi, zi)}. We
then fit a classifier on D′, resulting in p(y|x, z), and also es-
timate p(z) by simply computing the observed frequencies
of z in D′. At testing time, we apply the back-door adjust-
ment equation above to classify new examples, which re-
quires summing over z for each instance. By controlling for
the effect of z, the resulting classifier is robust to the case
where p(y|z) changes from training to testing data.

In the experiments below, we consider the problem of pre-
dicting a user’s location y based on the text of their tweets
x, confounded by the user’s gender z. That is, in the train-
ing data, there exists a correlation between gender and lo-
cation, but we want the classifier to ignore that correlation.
When applying back-door adjustment to a logistic regression
classifier, the result is that the magnitudes of coefficients for
terms that correlate with gender are greatly reduced, thereby
minimizing the effect of gender on the predictions.

Adjusting for unobserved confounders

In the previous approach, it was assumed that we had access
to a training set D = {(xi, yi, zi)}; that is, each instance
is annotated both for the label y and confounder z. This
is a burdensome assumption, given that ultimately we will
need to control for many possible confounders (e.g., gen-
der, race/ethnicity, age, etc.). Because many of these con-
founders are unobserved and/or difficult to obtain, it is nec-
essary to develop adjustment methods that can handle noise
in the assignment to z in the training data.

Our proposed method assumes we have an (imperfect)
classifier for z, trained on a secondary training set Dz =
{(xi, zi)} — we call this the preliminary study, with the re-
sulting preliminary classifier p(z|x). This is combined with
the dataset Dy = {(xi, yi)}, used to train the primary classi-
fier p(y|x). The advantage of allowing for separate training
sets Dy and Dz is that it is often easier to annotate z vari-
ables for some users than others; for example, Pennacchiotti
and Popescu (2011) build training data for ethnicity classifi-
cation by searching for online users that explicitly state their
ethnicity in their user profiles. After training on Dz , the pre-
liminary classifier is applied to Dy to augment it with pre-
dicted annotations for confounder z: D = {(xi, yi, z

′
i)}ni=1,

where z′i denotes the predicted value of zi. A tempting ap-
proach is to simply apply back-door adjustment as usual to
this dataset, ignoring the noise introduced by z′. However,
the resulting classifier will no longer properly control for
the confounder z because (1) the observed correlation be-
tween y and z′ in the training data will underestimate the ac-
tual correlation, yielding reduced coefficients for the z fea-
tures (attenuation bias), and therefore reducing the adjust-
ment power of back-door adjustment; and (2) some train-
ing instances have mislabeled annotations for z, making it
more difficult to detect which features in x correlate with
z, thereby preventing back-door adjustment from reducing
those coefficients. In the following two sections, we pro-
pose two methods to fix these issues.

Thresholding on confidence of z predictions Our first
approach is fairly simple; its objective is to directly reduce
the number of mislabeled annotations in z′. Our preliminary
model produces the value z′i (the prediction of the true con-
founder zi) as well as p(zi = z′i|xi) (the confidence of the
prediction; i.e., the posterior distribution over z). We use
these posteriors to remove predictions with low confidence.
By setting a threshold ε ∈ [0.5, 1], we filter the original
dataset D = {xi, yi, z

′
i} by keeping an instance i only if

it satisfies p(zi = z′i|xi) ≥ ε. With this smaller set of train-
ing instances, we run back-door adjustment without modifi-
cation. However, one important drawback of this method is
that we remove instances from our training dataset.

Correlation matching The above approach aims to re-
duce errors in z′, and as a side effect improves the esti-
mate of r(y, z), the correlation between y and z. In this sec-
tion we propose an approach that directly tries to improve
the estimate of r(y, z) while also reducing errors in z. Let
r′ = r(y, z′) be the observed correlation between y and z′,
and let r = r(y, z) be the true (unobservable) correlation
between y and z in the training data for y, D = {xi, yi, z

′
i}.

Our proposed approach builds on the insight of Francis,
Coats, and Gibson (1999), who show that r′ can be estimated
from r using the variances of y and z as well as the variances
of the errors in y and z:

r′ = r

√
1

(1 +
Vey

Vy
)(1 + Vez

Vz
)
⇒ r = r′ ×

√
1 +

Vez

Vz

(1)
where Vz is the variance of z, and Vez is the variance of er-
ror on z, and analogously for Vy , Vey . Since in our setting y
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is observed, we can set Vey = 0 and solve for r. Thus, the
factor by which r′ underestimates r is proportional to the
ratio of the variance of the error in z to the variance of z.
We can estimate the terms Vz and Vez using cross-validation
on the preliminary training data Dz = {(xi, zi)}. Plugging
these estimates into Equation 1 enables us to estimate the
true correlation between y and z in the target training data
D. We will refer to this estimated correlation as r̂. Now,
let Z be the set of all possible assignments to z in the train-
ing set D (i.e., if z is a binary variable and |D| = n, then
|Z| = 2n). Let zj = {zj1 . . . zjn} ∈ Z be a vector of assign-
ments to z, and let r′(zj) indicate the correlation r(zj , y).
Then our objective is to choose an assignment from Z to
minimize r′(zj) − r̂, while still maximizing the probability
of that assignment according to the preliminary classifier for
z. We can write this objective as follows:

z∗ ← argmax
zj∈Z

⎛
⎝ 1

n

∑
zj
i∈zj

p(zi = zji |xi)

⎞
⎠−|r̂−r′(zj)| (2)

Thus, we search for an optimal assignment z∗ that maxi-
mizes the average posterior of the predicted z value, while
minimizing the difference between the estimated correla-
tion r̂ and the observed correlation r′(zj). This optimiza-
tion problem can be approached in several ways. We imple-
ment a greedy hill-climbing algorithm that iterates through
the values in z′ sorted by confidence and flips the value if
it reduces |r − r′|. The advantage of this approach is that it
not only produces assignments to z that better align with the
expected correlation r̂, but it also results in more accurate
assignments to z. The latter is possible because we are using
prior knowledge about the relationship between z and y to
assign values of z when the classifier is uncertain. As with
the thresholding approach of the previous section, once the
new assignments to z are found, back-door adjustment is run
without modification.

3 Experiments

We conducted text classification experiments in which the
relationship between the confounder z and the class variable
y varies between the training and testing set. We consider
the scenario in which we directly control the discrepancy be-
tween training and testing. Thus, we can determine how well
a confounder has been controlled for by measuring how ro-
bust the method performs across a range of discrepancy lev-
els. We denote rtrain(y, z) (respectively rtest(y, z)) as the
correlation between y and z in the training set (resp. testing
set). We also denote δyz = rtrain(y, z) − rtest(y, z), the
discrepancy between the training and test set.

4 Results

To validate our approach, we use the dataset from Landeiro
and Culotta (2016), where the task is to predict the location
of a Twitter user given her tweets confounded by gender.
In the expanded version of this paper, we also experiment
on a new dataset in which the task is to predict whether a
Twitter user smokes based on their tweets, again confounded
by gender. This second dataset yields similar core results in

Figure 1: Effect of controlling for confounders on classifier
robustness.

our experiments. Below, F1z denotes the F1 score for the z
classifier on the preliminary study, and F1y denotes the F1
score for the y classifier on the primary study.

Effects of correlation adjustments on F1z

When using ε thresholding, rε(y, z) approaches the true
r(y, z) as ε increases, leading to improved performance on
our external study. However, it takes a high value of ε to get
a correct approximation of the true association between y
and z, meaning that we need to discard many training ex-
amples from our preliminary study to approximate r(y, z).
Using correlation matching method, we obtain similar or
better results for F1z , but we do not discard instances from
the dataset.

Effects of correlation adjustments on F1y

Fixed F1z = 0.784: As our primary result, we report the
F1y obtained by different correlation adjustment methods
across a range of shifts in the discrepancy between training
and testing. For the Twitter dataset, the best performance we
get in the preliminary study is F1z = 0.784. We then com-
pare testing F1y as rtrain(y, z) and rtest(y, z) vary. The
results are shown in Figure 1. Without any attempt to ad-
dress measurement error in z′, backdoor-adjustment is only
marginally more robust than Logistic Regression (z′+BA
vs. z+LR). When using ε thresholding, the performance is
slightly improved in the extreme cases but only by a few
points at most. However, when using the correlation match-
ing method, we improve F1y by 10 to 15 points in the most
extreme cases. For comparison, the figure also shows the
fully observed case (z+BA), which uses back-door adjust-
ment on the true values of z, to serve as an empirical upper-
bound. We can see that correlation matching is comparable
to the fully observed case, even with a 20% error rate on
z. These results show that by getting a better estimate of the
association between y and z, we can reduce attenuation bias
and improve the robustness of our classifier, even though our
observation of z is noisy.
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(a) No adjustment. (b) Thresholding at ε = 0.75. (c) Correlation matching.

Figure 2: Experimental results for back-door adjustment with an unobserved confounding variable in the location/gender
dataset.

Variable F1z: We showed in the previous section that
when we use our preliminary study with F1z = 0.784,
we can build a robust classifier using the correlation match-
ing method combined with back-door adjustment. Addition-
ally, we wish to see how sensitive the correlation adjustment
methods are to the quality of F1z . To do so, we increasingly
add noise to the dataset used to train the preliminary clas-
sifier (Dz = {xi, zi}) to make F1z decrease. Because we
want to visualize F1y against two variables (F1z and δyz),
we visualize the results in a heatmap. Figure 2(a) shows the
results for back-door adjustment when we use the predic-
tions of the preliminary study but we do not try to fix the
mislabeled values in z′. Figures 2(b) and 2(c) respectively
show the results when we use ε thresholding with ε = 0.75
and correlation matching. Similar to Figure 1, ε threshold-
ing only brings small improvement to no adjustment at all.
Furthermore, as F1z decreases, correlation adjustment with
ε thresholding performs worse than when we are not do-
ing any correlation adjustment. Clearly, the ε thresholding
method is more sensitive to the quality of the preliminary
study than the other methods.

The correlation matching method outperforms the other
methods in robustness and F1y when F1z ≥ 0.645, as we
can see by the wider range of red in Figure 2(c). This method
is also sensitive to the quality of the preliminary study as we
can see that F1y decreases with F1z . Recall that in this data
the best F1z is 0.784 — the trends suggest that correlation
matching would continue to outperform baselines as F1z
continues to increase.

5 Conclusion

In this paper, we have proposed two methods of using back-
door adjustment to control for an unobserved confounder.
Using a real-life dataset extracted from Twitter, we have
found that correlation matching on the predicted confounder
can recover the underlying correlation r(y, z) and perform
comparably to back-door adjustment with an observed con-
founder. We also showed that ε thresholding can be used
to slightly improve the predictions compared to logistic re-
gression, though it can harm accuracy when too many train-
ing instances are discarded. We showed that correlation

matching provides a way to adjust for an unobserved con-
founder and outperform plain back-door adjustment as long
as F1z > 0.65. In future work, we will consider hybrid
methods that combine ε thresholding and correlation match-
ing to increase robustness as F1z decreases.
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