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Abstract

In text classification, the testing data often systematically differ
from the training data, a problem called dataset shift. In this paper,
we investigate a type of dataset shift we call confounding shift.
Such a setting exists when two conditions are met: (a) there is
a confound variable Z that influences both text features X and
class label Y'; (b) the relationship between Z and Y changes from
training to testing. While recent work in this area has required
confounds to be known ahead of time, this is unrealistic for many
settings. To address this shortcoming, we propose a method both
to discover and to control for potential confounds. The approach
first uses neural network-based topic modeling to discover potential
confounds that differ between training and testing data, then uses
adversarial training to fit a classification model that is invariant
to these discovered confounds. We find the resulting method to
improve over state-of-the-art domain adaptation method, while also
producing results that are competitive with those obtained when
confounds are known ahead of time.

1 Introduction

In text classification, the testing data is often drawn from a
different distribution than the training data. This dataset shift
may happen because of a change in domain (e.g., from movie
reviews to product reviews) or because of data drift over
time (e.g., words that predict conservative political views in
2014 may predict liberal political views in 2018). Domain
adaptation (DA) algorithms learn classifiers in the presence
of such dataset shift. Most DA approaches analyze the
differences between the training and testing data in order to
learn domain-invariant feature representations [2, 6, 3].

In this paper, we investigate a specific type of dataset
shift we call confounding shift. A confounding variable,
or confound, is a latent variable Z that influences both the
text features X and the class label Y. Confounds in text
classification have received attention recently due to their
prevalence in computational social science as well as their
importance in algorithmic fairness in machine learning [9,
12, 14, 13]. Confounding shift occurs when the relationship
between the confound Z and class label Y changes from
training to testing. For example, consider a training set
for movie review sentiment classification in which horror
movies are overall more likely to have negative reviews
than other genres. Here, movie genre confounds sentiment

classification. However, if the testing set contains many
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critically acclaimed horror films, then the classifier may have
a high false negative rate for them due to the presence of
horror-related terms.

Existing approaches to controlling for confounds in text
classification assume the set of confounds are known a priori
[9, 14, 13]. However, in real-world settings with streaming
data, we will rarely know the confounds in advance, limiting
the applicability of these approaches.

In this paper, we propose a method to both discover
and control for confounds in text classification, thereby im-
proving robustness to confounding shift. The approach first
builds on recent work in adversarial domain adaptation [6]
to fit a neural network-based topic model that discovers la-
tent variables correlated with the input X but not with the
target variable y or with the source of the data s (train or
test). This allows us to find latent variables that change from
training to testing time. Our assumption is that these words
are correlated with the latent confounding variable. Next, to
control for these variables, we fit a classifier with an adver-
sarial training objective that learns representations that do a
poor job of predicting the discovered latent variables. The
resulting approach can be understood as a type of unsuper-
vised domain adaptation tailored to the task of confounding
shift.

We evaluate the approach on three text classification
tasks where there is high confounding shift between training
and testing due to one latent confounding variable. We
find that 1) state of the art domain adaptation recovers
well from high confounding shift and 2) when the latent
confounding variable is well captured by a topic model,
the approach we propose is able to outperform domain
adaptation; otherwise it is on par with domain adaptation.
In the remainder of the paper, we summarize related work
in Section 2, formalize our problem setting in Section 3,
and describe our proposed approach in Section 4. Then, we
describe the data and experimental results in Sections 5 and
6, respectively. Finally, we discuss the limitations of the
approach in Section 7 before giving concluding remarks in
Section 8.

2 Related Work

Goodfellow et al. [7] popularized adversarial training for
deep generative modeling; Ganin et al. [6] subsequently
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extended this approach to unsupervised domain adaptation.
This method fits a neural network using two error signals:
(1) the traditional classification error; and (2) the error of
predicting whether an example is drawn from the training
or testing set. By learning a representation that has low
error for (1) and high error for (2), we can hope to learn a
representation that is shared by both the training and testing
data.

A number of recent approaches applied adversarial
training to control for sensitive variables in classification [4,
16, 11, 17]. Other approaches use simpler statistical adjust-
ment methods to remove confounds from text classification
algorithms [9]. However, these methods all assume the con-
founding variables are known in advance.

Our work is inspired in part by Pryzant et al. [13], who
learn a lexicon while controlling for given confounds. One
of their methods uses adversarial learning to train a classifier
that does poorly at predicting a pre-specified confound. In
our work, we also use adversarial learning to control for
confounds; however, we do not assume we know confounds
in advance. Instead, we use latent variable discovery to
first identify candidate confounds, then control for them with
adversarial learning.

Another more distantly related line of work is on con-
cept drift adaptation, which considers how to train classi-
fiers in streaming settings in order to be robust to dataset
shifts [10, 5]. While similar in motivation, this prior work
typically assumes an oracle is available to annotate new doc-
uments for training, which is not the case in our setting.

In summary, our approach combines two lines of re-
search: domain adaptation and controlling for confounds in
text classification. Whereas prior work in controlling for
confounds assumes the variables are known in advance, here
we discover them. Additionally, while prior work in domain
adaptation is designed to learn generic, domain-invariant
representations, here we instead tailor domain adaptation
methods to the problem of confounding shift.

3 Problem Definition

In common text classification tasks, a training dataset of [V
instances D; = {(Z;,v;)}}_, is available at time ¢ through
data collection and annotation. For a vocabulary of size d
and a target accepting K different values, each data point is
represented as a tuple of the encoded text input #; € R and
the associated target variable y; € {1,..., K}. A predictive
model is then fit on the N training instances, resulting in a
function f : RY — {1,..., K} that is able to assign a label
to a new instance. At a later time ¢, new data is collected
and labeled using f such that Dy = {(Z}, f(Z;))}}L,. In
theory, if the data source is the same at times ¢ and ¢™, then
the distributions p,(Z,y) and p;+ (%, y) should be the same.
However, in text classification, this is often not the case, as
languages evolve and some latent factors can impact the joint

Notation Description
X Input variables (text features).
Y Output variable (class label).
A Confounding variable.
Pearson correlation between two
p(4,B) variables A and B.
P,(e) Probability of event e at time ¢.
Hellinger distance between two
HD(p, q) s

probability distributions p and gq.

Table 1: Table of notations used across this paper.

distributions over words and labels.

In this paper, we focus on the effect of variables that
are correlated with both the input Z and the output y of a
text classifier f: confounding variables. In particular, we
study the problem of confounding shift that appears when
the influence of such a confounding variable z is changing
between time ¢ and time ¢T. Indeed, if the influence of z
does not change between fitting time and prediction time as
assumed in classical text classification, then there should be
no impact on the performance of f. However, if for instance
the influence of z on y increases between ¢ and ¢T, then z
may introduce spurious correlation, leading to a significantly
degraded performance of classifier f on new data. In prior
work [9, 13], it is assumed that the confounding variable
is known at training time. Here, we propose a two step
approach aiming to control for confounding shift caused by
one confounding variable:

1. CONFOUNDDISCOVERY tackles the problem of detect-
ing which variables are prone to be a source of con-
founding shift. The inputs of this subproblem are the
dataset at fitting time D; and the dataset at predic-
tion time D;+. The output generated by this task is a
pair (Z;, 0;) for every document in the training dataset,
where Z; is the estimated value of the confounding vari-
able and o; is the confidence of our model that Z; is the
correct value.

2. CONFOUNDCONTROL uses the output of the previous
subproblem to build a classifier g that is robust to con-
founding shift. Multiple approaches can be applied for
this task. In the following section, we explain the ad-
versarial method borrowed from the domain adaptation
field we used to solve this problem.

4 Methods

In this section, we first present our method to solve the
CONFOUNDDISCOVERY task when an unknown confound-
ing variable z generates confounding shift between times ¢
and tT. Then, we present an adversarial approach to solve
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the CONFOUNDCONTROL problem. Finally, we explain our
proposed method as well as multiple baselines.

4.1 Confound Discovery. First, we fit a topic model on
both D, and D,+ that does not discriminate on the data
source s (D; vs D;+) nor on the target variable y. We then
look for terms that display a change in their distribution
over topics between times ¢ and ¢*. Since we constrain
our topic model to produce topics that are not discriminative
of y or s, we hypothesize that the changes in distributions
are due to the latent confounding variable as the effect of
the other covariates has been dampened by the fact that the
topics created are not discriminative. Finally, we use these
discovered words to infer a confounding variable Z; and a
confidence indicator o; for each instance in the training set
Dt.

Topic modeling. Our topic model is based on the ProdLDA
model introduced by Srivastava and Sutton [15]. ProdLDA
and LDA [1] are alike in that they are topic models and
return similar topic distributions but the former has two
main advantages: 1) it is based on neural networks and can
therefore be more easily adapted to new problem settings and
2) it can make use of GPUs to speed up computation. The
standard architecture of a ProdLDA model is shown in black
in Figure 1; it consists of an encoder network (from X to
T) followed by a decoder network (from 7" to X ). Itis also
very similar to the variational autoencoder architecture [8];
the main difference is that the encoder loss of ProdLDA
constrains the latent units to be distributions over documents.

In order to build a topic model that is not discriminative
with respect to y and s, we extend the ProdLDA model with
the gradient reversal layers proposed by Ganin et al. [6] and
indicated by the dashed arrows labeled GR in Figure 1. To
do so, we first add two output nodes and their associated
discriminative loss to the original ProdLDA model, one for
the data source s € {t,¢*} and one for the target variable y.
Then, we implement the gradient reversal step such that the
partial gradients computed at nodes s and y are multiplied
by —1 before they are back propagated to 7. This causes
the latent units in 7" to contain representations that are not
predictive of s or y.

Note that we do not have label information for data in
D,+ so we ignore the y-loss when s = ¢+, allowing us to
train the model in one pass:

h1 = softplus(WyX)

he = softplus(Wihq)

pr = BatchNorm (W3 hs)

or = exp(BatchNorm(Wyhs))

Using the reparameterization trick similar to that in a Vari-
ational Autoencoder [8], we first sample € such that € ~

X

s
]

Figure 1: Adversarial and supervised ProdLDA. GR indi-
cates a gradient reversal layer.

N(0,T). We can then sample T from N (ur,or) and fin-
ish the pass through the decoder:

1/2
Tsampled = pr + op X €

T = softmaz(Tsampled)

X = softmax(BatchNorm(W3T))

s = softmax(BatchNorm(GR(W3T)))
y = softmazx(BatchNorm(GR(WZT)))

As discussed by Srivastava and Sutton [15], the objec-
tive L xrto minimize of the original ProdLDA architecture
is the sum of the latent loss (encoder) and the reconstruction
loss (decoder). Since we extend the original ProdLDA with
two more output nodes, we introduce to the model two addi-
tional categorical cross-entropy losses, resulting in the total
loss as follows:

N
Ly =" yilogy
=1

N+M

Z Si log <§7

i=1
Liotar = LX,T + Ly] + L,

Ly =

Building a confounding indicator. Once our topic model
has been trained, we can obtain the topic distribution 7; =
{7i1,...,7} for a document Z;, where [ is the number
of topics. We combine this information with the encoding
of each document to create a topic distribution at the word
level. Specifically, for word w;, we compute &;(D) =
{wj1(D),...,w; (D)} where

wj k(D) = Z Lij X Tik
;€D

where x; ; is the encoding of word w; in document ; and
i,k 1s the probability of document z; to be in topic k. To
find words that change at the topic level between training and

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited



testing, we compute the Hellinger distance h(w;) for every
term such that:

h(w;) = HD(w;(D¢), w;(Dy+))

Our hypothesis is that the higher h(wj;) is, the more
likely term wj is to be correlated with the latent confounding
variable. Unfortunately, it is not enough to know that a
variable is correlated with the confounding variable z, we
also need to know if it is positively or negatively correlated
with z. Although we do not have access to z, we know
that p(y, z), the Pearson correlation between y and z, is
large because we are in a situation of high confounding shift,
therefore we can use p(w;,y) as a noisy proxy for p(wj, z).
Using this information, we obtain a score for every document
x; € Dy indicating how correlated to z a document is and in
which direction:

> sign(p(w;,y)) x hiw))

J:zi ;70

That is, we sum over each word present in Z;, multiplying its
sign by its Hellinger distance.

Finally, we break down this score in two parts and we let
%; = sign(h(&;)) be our estimation of z; and o; = |h(Z;)|
the confidence we have in our estimation.

4.2 Confound Control. We now have a method to detect
words that are correlated with the latent confounding vari-
able. We can assign an estimation Z of this confounding
variable to each document in the training set along with o,
a measure of how confident our method is in the estimation.
In this section, we present the confounding control methods
that we use for our experiments. This approach is inspired
by the Domain-Adversarial Neural Network introduced in
by Ganin et al. [6] and used with confounding variables by
Pryzant et al. [13]. The original model is used for domain
adaptation purposes where it uses an adversarial approach
to learn representations that are predictive of the class label
y while at the same time performing poorly to distinguish
between the different domains s. To do so, the authors im-
plemented the neural network displayed in black in Figure 2
where X is the text input, y is the class label, s is the domain
and e is a shared representation. The trunk (from X to e)
and the first branch (from e to y) creates a standard feed for-
ward network. However, the second branch (from e to s) is
not standard as it implements the adversarial part of this net-
work. A gradient reversal layer is added: it is idle during the
feed-forward phase but reverses the gradient right before the
shared representation e during the back-propagation phase.
Doing so will create a shared representation e predictive of
y but unable to discriminate amongst domains s, hence lead-
ing to a classifier that generalizes to multiple domains. Here,
we propose to extend this model by adding a third branch

Figure 2: Adversarial classifier.

(in blue in Figure 2) that will encourage the shared layer e
to not be able to distinguish between multiple values of the
confounding variable z (discovered by the method in the pre-
vious section).

Similarly to the way we trained our topic model, we can
use the training and testing datasets to fit this adversarial
model. To do so, we take the losses from all the branches
into account when fitting on instances from D; and we only
use the s-branch loss when fitting on instances from D+ .

4.3 Proposed Approach and Baselines. In this section,
we summarize the multiple models used to run our experi-
ments. The simplest baseline we use is a logistic regression
classifier (referred to as LR) that does not control for any
kind of data shift. The remaining models are all different fla-
vors of the architecture introduced in Figure 2. In Table 2,
we indicate which branches of the architecture are active.

Using the same base architecture for most of our base-
lines makes the comparison easier as they all have the same
number of hidden layers and the same number of neurons in
each layer. The variation from one model to another stands
in which branch is active and which is not.

o DNN stands for Dense Neural Network and is an non-
adversarial approach, we obtain it by keeping the trunk
and the highest branch of our shared model. Therefore,
there are no gradient reversal layer in this model. It is
expected to perform comparable to LR.

e The DA approach is the domain-adversarial approach
developed by Ganin et al. [6] where no confounding
variable information is available to the model.

y-branch  s-branch z-branch
DNN v X X
DA v v X
V/ v X 2
DA+Z v v 2
Oracle v X z

Table 2: Differences between models based on network
architecture of Figure 2
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e Model Z is the first approach we propose in this paper:
we first build an estimate of the latent confounding
variable using the method described in this section and
then we fit the adversarial model without the domain
branch. We use the confidence o; to weight the y-loss
for every training instance ;.

e Our second approach (DA+Z) combines models Z and
DA such that all branches are in use.

e Finally, the Oracle model is the same model as 7 with
the crucial difference that the true confounding variable
is known at training time: it provides a performance
upper bound for the rest of the models. We are able to
implement this model in the experiments below because
we consider a setting in which we inject confounding
shift into a dataset.

5 Datasets

We conducted experiments on three real-world datasets, in
which the relationship between the confounding variable
Z and the target variable Y changes between training and
testing. For all experiments, we decide upon the Z variables
ourselves, but none of the methods observe that variable
directly (except for Oracle). This gives us an experimental
framework to measure how robust the methods are to a
known magnitude of confounding shift.

5.1 Twitter Datasets. This dataset contains Twitter users
annotated with gender and location information. We create
two classification tasks from this data: the first predicts
location, where gender is a potential confound; the second
predicts gender, where location is a potential confound. To
build this dataset, we use Twitter streaming API to collect
tweets with geo-coordinates from New York City (NYC)
and Los Angeles (LA). Over a four-day period, we gathered
a total of 246,930 tweets for NYC and 218,945 for LA.
Afterwards, we further denoise our data by filtering out bots,
celebrities, and marketing accounts by removing users with
fewer than 10 followers or friends, more than 1,000 followers
or friends, or more than 5,000 tweets. Using U.S. census
name data, we then label unique users with their gender,
removing any ambiguous names. For each user labeled, we
collected all available tweets (up to 3,200) and represented
each user as a binary unigram vector. Finally, we subsample
from this collection and keep the tweets from 6,000 users
such that gender and location are uniformly distributed over
the users.

We refer to this as the TWYLZG dataset when y; = 1
indicates NYC and z; = 1 indicates Male. We also create
the complementary TWYGZL dataset when y; = 1 indicates
Male and z; = 1 indicates NYC. In this case, the task is to
predict the user’s gender, confounded by their location.

5.2 Yelp Dataset. We use the data provided through the
Yelp Dataset Challenge to create this dataset. For each
review in the dataset, we collect the text, the rating, as well
as the category of the business targeted by the review. We
encode the text using a binary vector to indicate the presence
or absence of a given word. We then binarize the rating value
such that reviews with ratings of 1 and 2 are assigned label
0 and those with ratings 4 and 5 are assigned label 1; neutral
reviews (3-star rating) are removed from the dataset. Finally,
we group businesses from food-related categories together
(restaurants, bar, etc) and we group the remaining businesses
together. This binary category encoding will be used in our
experiments as the confounding variable such that y; = 1
indicates a positive review and z; = 1 indicates that the
business targeted by the review is food-related. This dataset
— referred to as Yelp — contains 6000 instances balanced
across both y and z.

5.3 Injecting Confounding Shift. For the datasets we are
working with, we know the true confounding variable. Thus,
we can create datasets with different P(Y'|Z) distributions
by sampling without replacement from each set D; C D,
and D;Jr C D,;+ where y; and z; are binary variables. To
simulate a change in P(Y'|Z), we introduce a bias parameter
b where P(y = 1|z = 1) = b and we use different bias
terms b; and b+, for training and testing. Thus, sampling
was made according to the following constraints:

o« P(y=1lz=1)=1b

o Pu(y=1lz=1)=by
o B(Y) =P (Y)

o Pi(Z) =P (2)

We emphasize the fact that we do not change any of the
actual labels in the data, but instead merely sample instances
to meet these constraints. While the first two are required
to simulate a change in P(Y'|Z), the last two constraints are
to isolate the effect of changes to P(Y'|Z); that is, we vary
P(Y|Z), but make P(Y") and P(Z) consistent from training
to testing.

6 Experiments and Results

We first inject high confounding bias in datasets us-
ing the sampling method described above with biases
{bs, b+ } € {0.1,0.9}%. We create two datasets with every
bias value such that we can repeat experiments. We fit our
extended ProdLDA model with an Adam optimizer and a
learning rate of 0.001 for at most 600 epochs. We set the
dimensions of hidden layer to 256 and the topic layer con-
tains 128 units. We train the proposed adversarial classifier
with similar settings with a hidden layer of dimension 100
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in the trunk part and hidden layers of dimension 50 in the
branches parts.

TwYLZG TwYGZL Yelp
LR 0.653 £ 0.02 0.694 & 0.03 0.669 £ 0.03
DNN 0.650 £ 0.01 0.704 £ 0.02 0.655 £ 0.04
DA 0.809 £ 0.05 0.779 £ 0.04 0.727 +0.02
Z 0.728 £0.11 0.641 4 0.05 0.702 £ 0.04
DA+Z 0.848+£001 0.77340.04 0.725 £ 0.04
Oracle 0.864 +0.01 0.823 £ 0.01 0.827 £ 0.02

Table 3: F1 results for the three tasks.

6.1 Main Results. Table 3 displays the F1 score for each
of the methods across the three different tasks. The first
thing to notice is that the model only focusing on domain
adaptation (DA) is performing consistently well across three
datasets and is robust to confounding shift. This makes sense
as the confounding variable z and the data source s are highly
correlated in case of high confounding shift.

Comparison with Generic Adversarial Domain Adapta-
tion. The results indicate that our approach, DA+Z, out-
performs the generic adversarial approach DA on the first
task by 3.9 points absolute improvement in F1. On the other
tasks, its performance is on par with the generic adversarial
approach.

Comparison with No Domain Adaptation. For all tasks,
our approach outperforms a logistic regression classifier that
performs no domain adaptation (LR), ranging from 5.6 to
19.5 absolute improvement points in F1. Our approach also
outperforms DNN by 19.8, 7.9, and 7 points. It’s also worth
noting how severe high confounding shift is to baselines that
ignore the confounds like LR and DNN. For example, for
TwYLZG dataset, DNN and LR F1 scores degrade from
0.897 and 0.9 to 0.650 and 0.653, respectively, when high
confounding bias is introduced into the dataset.

Comparison with an Oracle Approach. We are also
comparing with an Oracle approach, where we assume we
know the confounding variable ahead of time, and control
for it directly using adversarial learning. As expected,
Oracle outperforms all methods — it is worth noting that
adversarial training does a very effective job of removing the
influence of the confounder even under the extreme levels
of confounding shift present here. For example, when there
is no confounding shift, the DNN classifier on TWYLZG
achieves 0.877 F1; under extreme confounding shift, this
only drops to 0.864 F1 using adversarial training to control
for the confound. Considering Oracle as a soft upper-
bound, we can see that DA+Z achieves most of the possible
improvement over DNN that Oracle does. However, this

is not the case on the other two datasets. We speculate
that this is primarily due to the errors in identifying the
likely confounding variable, as well as the attenuation bias
produced by controlling for a noisy variable.

6.2 Additional Results In this section, we first analyze
what makes the approach we propose outperform domain
adaptation on TWYLZG. Then, we measure the sensitivity
of the DA+Z when the loss weight of z is varying.

3.5 —$— DNN
DA
q - Z
S 3.0 —%— DA+Z
£ —4— Oracle
o
Q 2.5
£
el
2
o
=20
Q
o
o
Y5
<
1.0
0 20 40 60 80 100

Number of Words Most Correlated with Z

Figure 3: Average weight of words most correlated with the
confounding variable.

Interpreting the Learned Representations. To better un-
derstand the difference between our approaches and the
baselines, we analyzed the representations learned by each
method, looking at how effective each approach was at re-
moving features related to the confound from the model.
Using the TWYLZG dataset, we first compute the words
that have the strongest correlation with the gender label (e.g.
“cute”, “makeup”, “lebron”, etc.) when there is no con-
founding bias induced. Then, we train our model on biased
train and test datasets displaying high confounding shift as in
our previous experiments. Finally, we report the importance
of the words most correlated with gender for each model. To
do so, we compute the dot product from the input layer to
the y-layer and retrieve the weight associated to every word.
In order to compare different models, we standardize these
weights and take their absolute value as we are only inter-
ested in the importance of the word but not the direction.
Figure 3 shows the average weight of the K terms most cor-
related with gender with K varying from 5 to 100 on the
x-axis. We observe a clear order where DNN puts a lot of
importance on terms correlated with gender and then DA,
Z, DA+Z, and Oracle each give less and less importance to
these terms. In other words, each model controls more for
words correlated with gender than the previous one, making
it more robust in presence of confounding shift. This fig-
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ure gives insight into why DA+Z outperforms DA on this
dataset — the adversarial loss for 2 provides a greater penalty
on representations that contain the confounding variable.

Additionally, Table 4 displays the most downweighted
words when comparing DNN to DA+Z. As hinted by the
results of Figure 3, these words are highly correlated with
gender (e.g. nails, bro, boyfriend, causewereguys, etc). This
shows that our approach is more robust to confounding shift
by reducing the importance of words highly correlated with
the confounding variable.

Sensitivity of DA+Z to the Loss Weight on z. When
controlling for a confounding variable using DA+Z, we can
adjust the weight of the loss created by the z-branch. By
default, the weights are set to 1 for all three losses in DA+Z.
We can choose to favor the z-loss by increasing its weight or
conversely we can favor the other two losses by decreasing
z-loss weight. We make this weight vary from 0.001 to 100
when running experiments similar to our main experiments.
We report the F1 scores of DA+Z on TWYLZG in Figure 4.
For these experiments, keeping the three loss weights equal
to 1 looks to be best method. Indeed, when z-loss weight
is smaller than 1, the final F1 decreases by 3 to 4 points.
Similarly, when this weight is greater than 1, the final F1
score drops by 2 points. Finally, it is important to note
that not only the average F1 declines when changing the
weight on z-loss but the model also becomes less stable as
demonstrated by the larger error bars.

0.86
0.85

0.84

F1

0.83

0.82

0.81

0.001 0.01 0.1 1.0

Weight of the z-loss in DA+Z

10.0 100.0

Figure 4: Performance of DA+Z when the weight on z-loss
is varying from 0.001 to 100.

7 Limitations

Our approach seems to improve DA and gets closer to
the Oracle model when the confounding variable is well
captured by the topic model. Gender can be well captured
through topics related to sports, video games, celebrities,
or shopping, yielding high performance of our method in

TwYLZG. However, location is much more difficult to
model through topics created by ProdLDA which can explain
why our approach is not improving over DA in the TWYGZL
dataset. For the Yelp dataset, we hypothesize that the
confounding variable food vs other business can be captured
by ProdLDA but is diluted across many topics. Indeed, food
can be broken down in a lot of subtopics (e.g. mexican,
japanese, french, etc) and other businesses range from car
dealers to nail salons, making the approach less effective.
Although this is a good first step to bridge the gap between
domain adaptation and confounding shift control, we wish to
address this issue in future work and to provide a topic model
that would capture these confounding variables.

8 Conclusion

In this paper, we presented a two step approach to control
for confounding shift caused by an unknown confounding
variable. We first use an adversarial topic model to discover
words that are changing from training time to testing time.
We then use these words to assign an estimated confounding
variable value to every document in the dataset, and we
control for this using an adversarial training objective. We
show on three datasets that domain adaptation manages to
recover well from confounding shift although it is not its
primary purpose. Additionally, our results show that our
proposed approach is able to bridge part of the gap towards
an Oracle method aware of the confounding variable when
the latent confounding variable is well captured by the topic
model.
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