
SampleRank:
Learning Preferences from Atomic Gradients

Michael Wick, Khashayar Rohanimanesh, Aron Culotta∗, Andrew McCallum
Department of Computer Science

University of Massachusetts Amherst
Amherst, MA 01003

{mwick,khash,culotta,mccallum}@cs.umass.edu

Abstract

Large templated factor graphs with complex structure that changes during infer-
ence have been shown to provide state-of-the-art experimental results on tasks
such as identity uncertainty and information integration. However, learning pa-
rameters in these models is difficult because computing the gradients require ex-
pensive inference routines. In this paper we propose an online algorithm that
instead learns preferences over hypotheses from the gradients between the atomic
steps of inference. Although there are a combinatorial number of ranking con-
straints over the entire hypothesis space, a connection to the frameworks of sam-
pled convex programs reveals a polynomial bound on the number of rankings
that need to be satisfied in practice. We further apply ideas of passive aggressive
algorithms to our update rules, enabling us to extend recent work in confidence-
weighted classification to structured prediction problems. We compare our algo-
rithm to structured perceptron, contrastive divergence, and persistent contrastive
divergence, demonstrating substantial error reductions on two real-world prob-
lems (20% over contrastive divergence).

1 Introduction

The expressive power of probabilistic programming languages (Richardson and Domingos, 2006;
Milch et al., 2006; Goodman et al., 2008; McCallum et al., 2009) has given rise to complex fac-
tor graphs that preclude exact training methods because traditional machine learning algorithms
involve expensive inference procedures as subroutines. For example, maximum likelihood gradi-
ents require computing marginals and perceptron gradients require decoding. Furthermore, these
inference routines must be invoked for each update, and therefore lie in some of the inner loops of
learning. A number of approaches address this issues to various degrees (Hinton, 2002; Hal Daumé
and Marcu, 2005; Tieleman, 2008). For example, LASO learns to score incomplete configurations
based on a binary loss function that determines if a partial configuration could lead to the ground-
truth; contrastive divergence (CD) approximates gradients by sampling in the neighborhood of the
ground-truth to obtain inexpensive updates.

In this paper we present SampleRank (Culotta, 2008), an alternative to contrastive divergence that
computes atomic gradients between neighboring configurations according to a loss function (for ex-
ample, F1 score). This signal induces a preference over the samples, and parameters are learned to
reflect these preferences. Because SampleRank is concerned only with the ranking of hypothesized
samples, and not with approximating likelihood gradients, the algorithm is not required to be gov-
erned by a strict Markov chain. In particular, this allows large parameter updates to be made between
intermediate samples, an immediate advantage over persistent contrastive divergence (PCD) which

∗Southeastern Louisiana University (culotta@selu.edu)

1

must ensure updates between neighboring samples are sufficiently small. Therefore, SampleRank
enjoys greater freedom in updating the parameters, and indeed we can apply ideas from passive ag-
gressive algorithms (MIRA) (Crammer et al., 2006) and feature-specific confidence-weights (Dredze
et al., 2008) in order to achieve even greater performance.

In our experiments, we compare SampleRank to several alternative learning algorithms and demon-
strate that it reduces error over several variations of CD, PCD, and perceptron on three different
datasets. We also explore different update rules including MIRA and confidence weighting, and
finally compare CD and SampleRank in chains not governed by strict ergodic properties.

2 Preliminaries

A factor graph G = 〈V,Ψ〉 is a bipartite representation of a probability distribution π, that decom-
poses into a set of factors Ψ = {ψ}. Random variables V can further be divided into observ-
ables X and hidden variables Y . Using lowercase letters (e.g., x, y) to denote values from the do-
mains of the random variables, the conditional distribution given by the factor graph can be written:
π(Y = y | X = x; θ) = 1

ZX

∏
ψ∈Ψ ψ(yi, xi). Where ZX is the input-dependent normalizer, and

factor ψ takes assignments to sets of hidden yi variables and observables xi as arguments. We define
the feasible region F ⊆ Y of the factor graph to contain only non-zero-probability configurations
F = {y ∈ Y | π(y|x) > 0}.

Parameter learning in factor graphs generally involves the update rule: θ ← θ + η∇, where ∇
is a correction that is applied to the current estimate of the parameters, and η is the learning rate.
For example, maximum likelihood gradients (ED 〈Φ〉 − Eθ 〈Φ〉) involve the #P-hard problem of
computing marginals for feature expectations under the model, and Collins’ structured perceptron
gradient (φ(y#

D)− φ(y#
θ)) requires the NP-hard problem of computing the MAP configuration y#

θ .

3 SampleRank

In this section we describe our algorithm, SampleRank, which learns configuration rankings from
atomic gradients. Recall that this work is motivated by the fact that most gradient methods require
an expensive black-box inference routine B (e.g., for returning y#). Now, we will assume B is no
longer a black-box, and we can indeed observe the underlying procedure that performs inference.
Furthermore, we will assume that each step of that procedure produces a configuration pair 〈y′, y〉
(as is the case with MCMC and local search methods). More precisely, let δ : F → F be the
nondeterministic transition function that represents a draw from a proposal distribution Q : F×F →
[0, 1] s.t.

∑
y′ Q(y′|y) = 1. At each step of inference δ is invoked to yield a new configuration

y′ from a current configuration y. Let φ : Y × X → IR|θ| denote the sufficient statistics of a
configuration, then we define the atomic gradient ∇ (from inference step y′ = δ(y)) as

∇ = φ (δ(y), x)− φ(y, x) = φ(y′, x)− φ(y, x) (1)

Let Gθ be a factor graph representation of a probability distribution π parameterized by θ, with
feasible region F ; and let P : Y × Y → {0, 1} be a preference function:

P(y′, y) =
{

1 if y′ is preferred
0 otherwise

(2)

then SampleRank is given in Algorithm 1. Despite its apparent simplicity, SampleRank is actually
quite general. In fact, SampleRank provides tremendous flexibility, enabling both proposal distribu-
tions and preference functions to be customized to a particular domain or setting. For example, in
unsupervised settings, the preference function could by governed by prior knowledge (or by mea-
suring a generative process); in supervised settings, preference functions can exploit ground-truth
labels (e.g., comparing F1 scores). We have established a convergence proof in our technical report
(Rohanimanesh et al., 2009) that is completely agnostic to the preference function and is applica-
ble to nearly arbitrary (including non-ergodic) proposal distributions. Many inference algorithms of
interest (such as Gibbs, and Metropolis-Hastings), are covered by the convergence results.

2

Algorithm 1 Atomic Gradient Method (SampleRank)
1: Inputs: training data D with factor graph G = 〈X, Y, Ψ, θ〉

Initialization: set θ ← 0, set y ← y0 ∈ F
Output: parameters θ

2: for t = 1, 2, . . . until convergence do
3: y′ ∼ Q(·|y)
4: ∇ ← φ(y′, x)− φ(y, x)
5: if [θ ·∇ > 0 ∧ P(y, y′)] then
6: θ ← θ − η∇
7: else if [θ ·∇ ≤ 0 ∧ P(y′, y)] then
8: θ ← θ + η∇
9: end if

10: if chooseToAccept(y, y′, θ) then y ← y′

11: end for

Finally, we note that although the learning rate η is traditionally a scalar, it can be adjusted by a
passive aggressive method (MIRA), or be vector-valued (as in confidence weighting). We adapt
these methods to our structured setting by casting each update as a binary classification problem
where the configuration pair is the data instance and the preference function serves as the label. The
sufficient statistics of the classification problem are then the components of the atomic gradient ∇.

3.1 Efficient Gradient Computations

Equation 1 implies that computing∇ requires obtaining sufficient statistics from two configurations
y and y′, which can be expensive. However, due to the local nature of search, this can be avoided
entirely. Taking advantage of the fact that sufficient statistics present in both y and y′ cancel, we can
compute∇ directly as: ∇ =

∑
φ∈ν(∆′) φ(yi, x)−

∑
φ∈ν(∆) φ(yi, x), where ∆′ is the new setting to

the variables that have changed, and ∆ is the previous setting to those variables before the transition.
The neighborhood function ν(∆′) returns the sufficient statistics that require these variable settings
as arguments. For many commonly used transition functions (e.g., Gibbs or split-merge (Jain and
Neal, 2004)), we save computing an order of n factors over the brute force method.

3.2 Sample Complexity

Although our algorithm considers a combinatorial number of ranking constraints (in the configura-
tion space of the factor graph), SampleRank can alternatively be viewed as an instance of random-
ized constraint sampling (Farias and Roy, 2004, 2006) or sampled convex programs (SCP) (Calafiore
and Campi, 2005), where errors are bounded on approximations to convex optimization problems
involving an intractable number of constraints. The unifying idea of these frameworks is the notion
of a relaxed optimization problem that considers just a manageable set of i.i.d. constraints. This
manageable set is actually sampled from the full constraint set according to a probability distribu-
tion ρ. Solutions are then obtained by optimizing the relaxed problem over the subset of constraints.
The underlying intuition of this idea is that most constraints are either (a) inactive, (b) redundant
(captured by other constraints), or (c) negligible (have only a minor impact on the solution). The
fundamental question that these frameworks address is how many samples are required such that the
solution to the resulting relaxed optimization problem violates only a small subset of constraints.
It has been shown (Farias and Roy, 2004) that in particular, for a problem with K variables, with
a number of sampled constraints given by: N = O

(
1
ε

(
K ln 1

ε + ln 1
δ

))
any optimal solution to

the relaxed problem with a probability at least (1 − δ) violates a set of constraints V with measure
ρ(V) ≤ ε, where ρ(.) is a probability distribution over the constraint space from which i.i.d. sample
constraints are generated.

SampleRank can be described as the following SCP:
{

minimize cT θ
subject to θ · φ(x, y−)− θ · φ(x, y+) ≤ 0, ∀〈y−, y+〉 ∈ ΩQ

where c is a vector of importance weights, and ΩQ is a set of sampled constraints generated by
SampleRank throughout the course of local search (e.g. MCMC) guided by a proposal distribution

3

Q(.))1. Taking K = |θ| reveals that a reasonable model can be learned by sampling a polynomial
size subset of the constraints.

4 Experiments

In this section we demonstrate how SampleRank can be used to train a conditional random field
(CRF) with first-order logic features defined over sets of instances. In particular, we focus on two
clustering problems: ontology alignment and noun-phrase coreference resolution. In ontology align-
ment, all concepts belonging to the same cluster are considered equivalent; similarly, in coreference,
all mentions belonging to the same cluster are considered coreferent.

Setup:
The CRF contains variables for each possible cluster (with a factor measuring the cluster’s compati-
bility) and variables between mention-pairs across clusters (with a factor measuring their disparity),
resulting in a combinatorial number of variables and factors. For more details about this CRF, please
see (Culotta et al., 2007), or our technical report (Rohanimanesh et al., 2009). For MAP inference,
we use Metropolis-Hastings, where the proposal distribution randomly picks a data-point then ran-
domly moves it to another cluster (or creates a new cluster). SampleRank treats each proposal as an
atomic inference step2; our preference function for both problems exploits the ground-truth labels
and is defined to be P(y′, y) = 1 if accuracy(y′)>accuracy(y), and 0 otherwise.

Data:
For coreference experiments we use the ACE 2004 dataset, which contains 443 documents; 336 for
training and 107 for testing. We run each online method over the training set (ten times), performing
4000 proposals (inference steps) per document. For the ontology experiments we use two domains
from the Illinois Semantic Integration Archive (ISIA): course catalog, and company profile (for
more discussion on these domains see Doan et al. (2002)).

Results:
First, we compare the BCubed F1 (in coreference) of three learning rates η: constant unit updates
(f1=77.6), MIRA updates (f1=80.5), and the approximate version of confidence weighted updates
(f1=81.5). Confidence weighted updates have previously been shown to improve results in classifi-
cation problems, and we were pleased to see a similar improvement in a structured prediction setting.
Next (Table 1), we compare SampleRank to variants of contrastive divergence, persistent contrastive
divergence, and perceptron on three datasets (ACE newswire coreference, course catalog ontology
alignment, and company profile ontology alignment). We observe substantial error reductions over
variants of contrastive divergence (more than 20% on ACE coreference—a new state-of-the-art re-
sult); in particular, we observe even greater improvements (over CD) in chains lacking detailed
balance. Columns indicated as valid MCMC chain use a proposer that moves a single variable and
obeys detailed balance. The column indicated as not valid MCMC chain uses a more sophisticated
proposer that adapts to the model, but does not necessarily obey detailed balance. Note how the
sophisticated proposal distribution hinders performance for CD, but actually helps SampleRank.

5 Acknowledgements

This work was supported in part by the Center for Intelligent Information Retrieval, in part by SRI
International subcontract #27-001338 and ARFL prime contract #FA8750-09-C-0181, in part by
The Central Intelligence Agency, the National Security Agency and National Science Foundation
under NSF grant #IIS-0326249, in part by Army prime contract number W911NF-07-1-0216 and
University of Pennsylvania subaward number 103-548106, and in part by UPenn NSF medium IIS-
0803847. Any opinions, findings and conclusions or recommendations expressed in this material
are the authors’ and do not necessarily reflect those of the sponsor.

1Note that in this particular case the choice of the importance weight vector c is unimportant (e.g., we can
chose c = 0) if the goal is to find a feasible solution for θ. For a quadratic program, the optimization objective
should be replaced by θT θ.

2Despite the large graph, computing the atomic gradients requires evaluating only a constant number of
cluster-wise factors.

4

ACE coreference Ontology alignment
valid MCMC chain not valid MCMC chain valid MCMC chain

Method F1 (B3) F1 (PW) F1 (B3) F1 (PW) F1 (Course) Match F1 (Company)
SampleRank 80.1 45.1 81.5 51.0 89.8 82.1
CD-1 75.1 22.4 75.1 22.4 76.9 64. 8
CD-10 76.03 33.7 73.1 19.3 72.4 67.8
PCD-10 77.9 37.3 75.7 19.5 67.9 74.6
Perceptron — — — — 69.7 60.2

Table 1: Comparison of SampleRank with other training methods

References
Calafiore, G. and Campi, M. C. (2005). Uncertain convex programs: Randomized solutions and

confidence levels. Mathematical Programming, 102:25–46.

Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., and Singer, Y. (2006). Online passive-
aggressive algorithms. J. Mach. Learn. Res., 7:551–585.

Culotta, A. (2008). Learning and inference in weighted logic with application to natural language
processing. PhD thesis, University of Massachusetts.

Culotta, A., Wick, M., Hall, R., and McCallum, A. (2007). First-order probabilistic models for
coreference resolution. In HLT, pages 81–88.

Doan, A., Madhavan, J., Domingos, P., and Halevy, A. Y. (2002). Learning to map between ontolo-
gies on the semantic web. In WWW, page 662.

Dredze, M., Crammer, K., and Pereira, F. (2008). Confidence-weighted linear classification. In
ICML ’08: Proceedings of the 25th international conference on Machine learning, pages 264–
271, New York, NY, USA. AC-M.

Farias, D. P. D. and Roy, B. V. (August 2004). On constraint sampling in the linear program-
ming approach to approximate dynamic programming. Mathematics of Operations Research,
29(3):462–478.

Farias, V. F. and Roy, B. V. (2006). Tetris: A study of randomized constraint sampling. Probabilistic
and Randomized Methods for Design Under Uncertainty, G. Calafiore and F. Dabbene, eds.

Goodman, N. D., Mansighka, V. K., D. Roy, K. B., and Tenenbaum, J. B. (2008). A language for
generative models. In UAI.

Hal Daumé, I. and Marcu, D. (2005). Learning as search optimization: approximate large margin
methods for structured prediction. In ICML, pages 169–176, New York, NY, USA. ACM.

Hinton, G. E. (2002). Training products of experts by minimizing contrastive divergence. Neural
Comput., 14(8):1771–1800.

Jain, S. and Neal, R. M. (2004). A split-merge markov chain monte carlo procedure for the dirichlet
process mixture model. Journal of Computational and Graphical Statistics, 13:158–182.

McCallum, A., Rohanimanesh, K., Wick, M., Schultz, K., and Singh, S. (2009). Facto-
rie:probabilistic programming via imperatively defined factor graphs. In Neural Information Pro-
cessing Systems(NIPS), Vancouver, BC, Canda.

Milch, B., Marthi, B., and Russell, S. (2006). BLOG: Relational Modeling with Unknown Objects.
PhD thesis, University of California, Berkeley.

Richardson, M. and Domingos, P. (2006). Markov logic networks. Machine Learning, 62:107–136.

Rohanimanesh, K., Wick, M., and McCallum, A. (2009). Inference and learning in large factor
graphs with adaptive proposal distributions. Technical Report #UM-CS-2009-028, University of
Massachusetts, Amherst.

Tieleman, T. (2008). Training restricted boltzmann machines using approximations to the likelihood
gradient. In ICML, pages 1064–1071, New York, NY, USA. ACM.

5

