\square

Homework Assignment 3

November 9th, 2022
Due on November 23th, 11:59pm
(midnight)

CS425 - Database Organization
Results

Instructions

- Try to answer all the questions using what you have learned in class
- Some questions are marked as bonus. You do not have to answer these questions to get full points for the assignment. However, you can get bonus points for these questions!

Part 3.1 Modelling (Total: 60 Points)

Question 3.1.1 (60 Points)

Build a conceptional model for a car repair shop. The solution should be presented as an ER-diagram. Base your design on the following requirements.

- The database should record information about Employees, Timeschedules, Customers, Cars (being repaired), Spare parts, Bills.
- An Employee is identified by their SSN. We also record their names and salary (monthly.
- A Timeschedule entry encodes a particular day and time interval during which an employee is at the shop. Each employee has at least one timeschedule entry, but may also have multiple entries.
- A Customer has a name which consists of firstName, middleName and lastName which are used together to identify a customer. A Customer has optionally an Address. All customers have a phoneNumber and email addresses. We also record the outstanding balance per customer.
- The repairshop keeps track of the customer's cars which are currently at the shop. A Vehicle is identified by the combination of their licenseplatenum. For each Vehicle we store the brand, model, and production year. Furthermore, we record when the vehicle was dropped off at the shop (drop off date) and when it was picked up (picked up). We also record which customer does own the vehicle.
- The shop keeps spare parts for repairs. For a spare part we record the car brand and model it can be used on, a product number (which is unique) and a price.
- A Bill is send to a particular customer for a particular vehicle. For each bills we record which spare parts (and how many of each type) were used in the repair. Bills are identified by a unique $i d$.

Solution

Part 3.2 Translation of ER into Relational Model (Total: 40 Points)

Question 3.2.1 (40 Points)

Take the following ER-model and translate it into a relational schema using the rules presented in class. Present the relational schema as an SQL script (assume that all attributes are of data type INT). Present the results of the following intermediate steps in this order:

1. Translate strong entities + unnest composite attributes
2. Translate weak entities
3. Translated multi-valued attributes
4. Translate relationships

Solution

```
1st Step (strong entities)
CrEate Table A (
    a1 INT,
    a2 INT,
    a3 INT,
    PRIMARY KEY(a1, a2)
);
CREATE TABLE B (
    b1 INT,
    b2 INT,
    b3 INT
    PRIMARY KEY (b1,b2)
);
CREATE TABLE C (
    c2 INT PRIMARY KEY
);
CREATE TABLE D (
    d1 INT,
    d2 INT,
    PRIMARY KEY (d1,d2)
);
```


2nd Step (weak entities)

```
CREATE TABLE A (
    a1 INT,
    a2 INT,
    a3 INT,
    PRIMARY KEY(a1, a2)
);
CREATE TABLE B (
    b1 INT,
    b2 INT,
    b3 INT
    PRIMARY KEY (b1,b2)
);
CREATE TABLE C (
    c2 INT PRIMARY KEY
);
CREATE TABLE D (
    d1 INT,
    d2 INT,
    PRIMARY KEY (d1,d2)
    );
CREATE TABLE E (
    e1 INT,
    d1 INT,
    d2 INT,
    PRIMARY KEY (e1,d1,d2),
    FOREIGN KEY d1,d2 REFERENCES D
);
```


3rd Step (multivalued attributes)

```
Create table A (
    a1 INT,
    a2 INT,
    a3 INT,
    PRIMARY KEY(a1, a2)
);
CREATE TABLE B (
    b1 INT,
    b2 INT,
    b3 INT
    PRIMARY KEY (b1,b2)
);
CREATE TABLE C (
    c2 INT PRIMARY KEY
);
CREATE TABLE C1 (
    c2 INT REFERENCES C,
    c11,
    c12,
    PRIMARY KEY (c2,c11,c12)
);
CREATE TABLE D
    d1 INT,
    d2 INT,
    PRIMARY KEY (d1,d2)
    );
Create Table E (
    e1 INT,
    d1 INT,
    d2 INT,
    PRIMARY KEY (e1,d1,d2),
    FOREIGN KEY (d1,d2) REFERENCES D
);
```


4th Step (relationships)

```
Create TABLE A (
    a1 INT,
    a2 INT,
    a3 INT,
    PRIMARY KEY(a1, a2)
);
CREATE TABLE B (
    b1 INT,
    b2 INT,
    b3 INT,
    x1 INT,
    a1 INT,
    a2 INT,
    PRIMARY KEY (b1,b2),
    FOREIGN KEY (a1,a2) REFERENCES A
);
CREATE TABLE X2 (
    b1 INT,
    b2 INT,
    x2 INT,
    PRIMARY KEY (b1,b2,x2)
);
CREATE TABLE C (
    c2 INT PRIMARY KEY,
    b1 INT,
    b2 INT,
    FOREIGN KEY (b1,b2) REFERENCES b
);
CREATE TABLE C1 (
    c2 Int REFERENCES C,
    c11,
    c12,
    PRIMARY KEY (c2,c11,c12)
);
CREATE TABLE D (
    d1 INT,
    d2 INT,
    PRIMARY KEY (d1,d2)
    );
CrEate TABLE E (
    e1 INT,
    d1 INT,
    d2 INT,
    PRIMARY KEY (e1,d1,d2),
    FOREIGN KEY (d1,d2) REFERENCES D
);
```

```
CREATE TABLE Y (
    a1 INT,
    a2 INT,
    c2 INT,
    d1 INT,
    d2 INT,
    PRIMARY KEY (a1,a2,c2,d1,d2),
    FOREIGN KEY (a1,a2) REFERENCES A,
    FOREIGN KEY (c2) REFERENCES B,
    FOREIGN KEY (d1,d2) REFERENCES C
);
CREATE TABLE Z (
    b1 INT,
    b2 INT,
    d1 INT,
    d2 INT,
    e1 INT,
    PRIMARY KEY (b1,b2,d1,d2,e1),
    FOREIGN KEY (b1,b2) REFERENCES B,
    FOREIGN KEY (d1,d2,e1) REFERENCES E
);
```


Part 3.3 Normalization (Total: 10 (BONUS) Points)

Question 3.3.1 (10 (BONUS) Points)

Consider the following relations and for each determine in which normal form the relation is (note that a relation can be in multiple normal forms). Please consider the following normal forms: 1NF, 2NF, 3NF and BCNF.

1. $R(A, B, C, D, E)$ and the Functional Dependencies are $B \rightarrow D, B D \rightarrow A E, B E \rightarrow A C, E \rightarrow D$
2. $R(A, B, C, D, E)$ and the Functional Dependencies are $B \rightarrow A, E \rightarrow A B, D \rightarrow B$
3. $R(A, B, C, D, E)$ and the Functional Dependencies are $A \rightarrow C, E \rightarrow B D, B E \rightarrow A D$
4. $R(A, B, C, D, E)$ and the Functional Dependencies are $E \rightarrow B, D E \rightarrow A, B \rightarrow D$

Solution

1. The relation is in 1 NF and 2 NF .
2. The relation is in 1NF.
3. The relation is in 1 NF and 2NF.
4. The relation is in 1NF.
