

CS425 – Fall 2017 Boris Glavic Course Information

Modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use

Hi, I am **Boris Glavic**, **Assistant Professor** in **CS**

Hi, I am **Boris Glavic**, **Assistant Professor** in **CS**

Hi, I am **Boris Glavic**, **Assistant Professor** in **CS**

0.4

Why are Databases Important?

What do Databases do?

- 1. Provide persistent storage
- 2. Efficient declarative access to data -> Querying
- Protection from hardware/software failures
- 4. Safe concurrent access to data

What happens if you do not pay attention?

Who uses Databases?

- Most big software systems involve DBs!
 - Business Intelligence ⇒ e.g., IBM Cognos
 - Web based systems
 - ...
- You! (desktop software)
 - Your music player ⇒ e.g., Amarok
 - Your Web Content Management System
 - Your email client
 - Half of the apps on your phone
 - ...
- Every big company
 - Banks
 - Insurance
 - Government
 - Google, ...

Who Produces Databases?

- Traditional relational database systems is big business
 - IBM ⇒ DB2
 - Oracle ⇒ Oracle ☺
 - Microsoft ⇒ SQLServer
 - Open Source ⇒ MySQL, Postgres, SQLite, ...
- Emerging distributed systems with DB characteristics and Big Data
 - Cloud storage and Key-value stores ⇒Amazon S3, Google Big Table, . . .
 - Big Data Analytics ⇒Hadoop, Google Map & Reduce, . . .
 - SQL on Distributed Platforms ⇒ Hive, Tenzing, ...

Why are Database Interesting (for Students)?

The pragmatic perspective

Background in databases makes you competitive in the job market
 ;-)

Systems and theoretical research

- Database research has a strong systems aspect
 - Hacking complex and large systems
 - Low-level optimization
 - cache-conscious algorithms
 - Exploit modern hardware
- Databases have a strong theoretical foundation
 - Complexity of query answering
 - Expressiveness of query languages
 - Concurrency theory

...

Why are Database Interesting (for Students)?

- Connection to many CS fields
 - Distributed systems
 - Getting more and more important
 - Compilers
 - Modeling
 - Al and machine learning
 - Data mining
 - Operating and file systems
 - Hardware
 - Hardware-software co-design

Webpage and Faculty

Course Info

- Course Webpage: http://cs.iit.edu/~cs425
- Google Group: https://groups.google.com/d/forum/cs425-2017-fall-group
 - Used for announcements
 - Use it to discuss with me, TA, and fellow students
- Syllabus: http://cs.iit.edu/~cs425/files/syllabus.pdf
- Git Repos: https://github.com/IITDBGroup/cs425

Faculty

- Boris Glavic (http://cs.iit.edu/~glavic)
- Email: <u>bglavic@iit.edu</u>
- Phone: 312.567.5205
- Office: Stuart Building, room 226C
- Office Hours: Mondays, 12pm-1pm (and by appointment)

TAs

- TAs
 - TBA

Workload and Grading

Exams

- Midterm (25%)
- Final (35%)
- Homework Assignments (preparation for exams!) 20%
 - HW1 (Relational algebra)
 - HW2 (SQL)
 - HW3 (Database modeling)
- Course Project (20%)
 - In groups of 3 students
 - Given an example application (e.g., ticketing system)
 - Develop a database model
 - Derive a database schema from the model
 - Implement the application accessing the database

Course Objectives

- Understand the underlying ideas of database systems
- Understand the relational data model
- Be able to write and understand SQL queries and data definition statements
- Understand relational algebra and its connection to SQL
- Understand how to write programs that access a database server
- Understand the ER model used in database design
- Understand normalization of database schemata
- Be able to create a database design from a requirement analysis for a specific domain
- Know basic index structures and understand their importance
- Have a basic understanding of relational database concepts such as concurrency control, recovery, query processing, and access control

PostgreSQL

- In this course we will use PostgreSQL, a powerful open source database management system
 - https://www.postgresql.org/

Course Project

- Forming groups
 - Your responsibility!
 - Inform me + TA
 - Deadline: TBA
- Git repositories
 - Create an account on Bitbucket.org (https://bitbucket.org/) using your IIT email
 - We will create a repository for each student
 - Use it to exchange code with your fellow group members
 - The project has to be submitted via the group repository
- Timeline:
 - Brainstorming on application (by Sep 11th)
 - Design database model (by Nov 12th)
 - Derive relational model (by Nov 25th)
 - Implement application (by end of the semester)

Fraud and Late Assignments

- All work has to be original!
 - Cheating = 0 points for assignment/exam
 - Possibly E in course and further administrative sanctions
 - Every dishonesty will be reported to office of academic honesty
- Late policy:
 - -20% per day
 - No exceptions!
- Course projects:
 - Every student has to contribute in every phase of the project!
 - Don't let others freeload on you hard work!
 - Inform me or TA immediately

Reading and Prerequisites

- **Textbook:** Silberschatz, Korth and Sudarsham
 - Database System Concepts, 6th edition
 - McGraw Hill
 - publication date:2006,
 - ISBN 0-13-0-13-142938-8.
- Prerequisites:
 - CS 331 or CS401 or CS403

Self-study

■ I expect you to learn by yourself how to effectively use the following technologies

- Git a version control system
 - You have to submit your project through git and should also use git to collaborate with your project group members
 - We provide some useful examples/scripts through git
- Docker a virtualization platform (think VMs, but more lightweight)
 - The easiest way to get postgres running is by using the docker image we provide

PostgreSQL

- I expect you to learn how to start/stop/configure a postgres server and how to connect to a running postgres server
- Help is on the way!
 - https://github.com/IITDBGroup/cs425

PostgreSQL Overview

Client/Server Architecture

- Postgres Cluster
 - A directory on the machine running the server that stores data and configuration files
- Postgres Server
 - A postgres server handles the data of single cluster
 - Clients connect to the server via network (TCP/IP)
 - Send commands and receive results
- Clients
 - GUI clients: e.g., PGAdmin (https://www.pgadmin.org/)
 - CLI clients: e.g., the built-in psql tool
 - Programming Language Libraries
 - Java: JDBC (https://jdbc.postgresql.org/)
 - Python: pyscopg (http://initd.org/psycopg/)

_ ...

Get Your Hands Dirty

Get a working version of the PostgreSQL server

- Your options
 - Install locally
 - Installer packages for windows exists
 - Most Linux distributions have a postgres package
 - Installation from source is not that hard
 - Get our docker image (docker pull iitdbgroup/cs425)
 - It's an extension of the official postgres image which loads our running example university database

Validate your installation

- Create a database cluster (the directory PostgreSQL uses to store data)
- Check that you can start/stop the server
- Check that you can connect to the running server using psql or any other client

CS425 – Boris Glavic 0.21 ©Silberschatz, Korth and Sudarshan

Jupyther notebook

Jupyther notebooks

- Notebooks mix documentation and code
- Over the course of the class I will put SQL examples we discuss in class into a notebook that is shared through the class repository:
 - classnotebook-2017-Fall/CS425-2017-Notebook.ipynb

Find the classnotebook

https://github.com/IITDBGroup/cs425

Outline

- Introduction
- Relational Data Model
- Formal Relational Languages (relational algebra)
- SQL
- Database Design
- Transaction Processing, Recovery, and Concurrency Control
- Storage and File Structures
- Indexing and Hashing
- Query Processing and Optimization