

CS425 - Fall 2017 **Boris Glavic Chapter 5: Intermediate SQL**

modified from:

Database System Concepts, 6th Ed.

Chapter 5: Intermediate SQL

- Views
- Transactions
- Integrity Constraints
- SQL Data Types and Schemas
- Access Control

Textbook: Chapter 4

Views

- In some cases, it is not desirable for all users to see the entire logical model (that is, all the actual relations stored in the database.)
- Consider a person who needs to know an instructors name and department, but not the salary. This person should see a relation described, in SQL, by

select ID, name, dept name from instructor

- A view provides a mechanism to hide certain data from the view of certain users.
- Any relation that is not of the conceptual model but is made visible to a user as a "virtual relation" is called a view.

View Definition

A view is defined using the **create view** statement which has

create view v as < query expression >

where <query expression> is any legal SQL expression. The view name is represented by v.

- Once a view is defined, the view name can be used to refer to the virtual relation that the view generates.
- View definition is not the same as creating a new relation by evaluating the query expression
 - Rather, a view definition causes the saving of an expression; the expression is substituted into queries using the view.

Example Views

- A view of instructors without their salary create view faculty as
 - select ID, name, dept_name from instructor
- Find all instructors in the Biology department select name from faculty
- where dept_name = 'Biology'
- Create a view of department salary totals create view departments_total_salary(dept_name, total_salary) as select dept_name, sum (salary) from instructor

group by dept_name;

Views Defined Using Other Views

■ create view physics_fall_2009 as

select course.course_id, sec_id, building, room_number from course, section

where course.course_id = section.course_id

and course.dept_name = 'Physics' and section.semester = 'Fall' and section.year = '2009';

■ create view physics_fall_2009_watson as select course_id, room_number from physics_fall_2009 where building= 'Watson';

View Expansion

Expand use of a view in a query/another view

create view physics_fall_2009_watson as
(select course_id, room_number
from (select course_course_id, building, room_number
from course, section
where course.course_id = section.course_id
and course.dept_name = 'Physics'
and section.semester = 'Fall'
and section.year = '2009')
where building= 'Watson';

00405 - 0----

@Silberschatz Korth and Sudarshan

Views Defined Using Other Views

- One view may be used in the expression defining another view
- A view relation v₁ is said to depend directly on a view relation v₂ if v₂ is used in the expression defining v₁
- A view relation v_1 is said to depend on view relation v_2 if either v_1 depends directly to v_2 or there is a path of dependencies from v_1 to v_2
- A view relation *v* is said to be *recursive* if it depends on itself.

oris Glavic 5.8

into the instructor relation

View Expansion

- A way to define the meaning of views defined in terms of other views
- Let view v₁ be defined by an expression e₁ that may itself contain uses of view relations.
- View expansion of an expression repeats the following replacement step:

repeat

Find any view relation v_i in e_1

Replace the view relation v_i by the expression defining v_i until no more view relations are present in e_i

 As long as the view definitions are not recursive, this loop will terminate

S425 – Boris Glavio

.9

Iberschatz, Korth and Sudarsh

Update of a View

Add a new tuple to faculty view which we defined earlier insert into faculty values (' 30765', ' Green', ' Music');

This insertion must be represented by the insertion of the tuple ('30765', 'Green', 'Music', null)

©Silberschatz, Korth and Sudars

Some Updates cannot be Translated Uniquely

create view instructor_info as

select ID, name, building

from instructor, department

where instructor.dept_name= department.dept_name;

- insert into instructor_info values (' 69987', ' White', ' Taylor');
 - which department, if multiple departments in Taylor?
 - what if no department is in Taylor?
- Most SQL implementations allow updates only on simple views
 - The from clause has only one database relation.
 - The select clause contains only attribute names of the relation, and does not have any expressions, aggregates, or distinct specification.
 - Any attribute not listed in the select clause can be set to null
 - The query does not have a group by or having clause.

CS425 – Boris Glavio

...

©Silberschatz, Korth and Sudarshan

... and Some Not at All

create view history_instructors as select *

from instructor

where dept_name= 'History';

What happens if we insert ('25566', 'Brown', 'Biology', 100000) into history_instructors?

PAGE Basia Claula

.12

@Silberschatz, Korth and Sudarshar


```
Referential Integrity

■ Ensures that a value that appears in one relation for a given set of attributes also appears for a certain set of attributes in another relation.

■ Example: If "Biology" is a department name appearing in one of the tuples in the instructor relation, then there exists a tuple in the department relation for "Biology".

■ Let A be a set of attributes. Let R and S be two relations that contain attributes A and where A is the primary key of S. A is said to be a foreign key of R if for any values of A appearing in R these values also appear in S.
```

```
Cascading Actions in Referential Integrity

create table course (
course_id char(5) primary key,
title varchar(20),
dept_name varchar(20) references department
)

create table course (
...
dept_name varchar(20),
foreign key (dept_name) references department
on delete cascade
on update cascade,
...
)

alternative actions to cascade: set null, set default
```


