
modified from:
Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use 

CS425 – Fall 2017
Boris Glavic

Chapter 6: Advanced SQL



©Silberschatz, Korth and Sudarshan5.2CS425 – Boris Glavic

Chapter 6:  Advanced SQL

■ Accessing SQL From a Programming Language
● Dynamic SQL

4JDBC and ODBC
● Embedded SQL

■ Functions and Procedural Constructs
■ Triggers

Textbook: Chapter 5



©Silberschatz, Korth and Sudarshan5.3CS425 – Boris Glavic

Accessing SQL From a Programming 
Language 



©Silberschatz, Korth and Sudarshan5.4CS425 – Boris Glavic

JDBC and ODBC

■ API (application-program interface) for a program to interact 
with a database server

■ Application makes calls to
● Connect with the database server
● Send SQL commands to the database server
● Fetch tuples of result one-by-one into program variables

■ ODBC (Open Database Connectivity) works with C, C++, C#, 
and Visual Basic
● Other API’s such as ADO.NET sit on top of ODBC

■ JDBC (Java Database Connectivity) works with Java



©Silberschatz, Korth and Sudarshan5.5CS425 – Boris Glavic

Native APIs

■ Most DBMS also define DBMS specific APIs

■ Oracle: OCI
■ Postgres: libpg

…



©Silberschatz, Korth and Sudarshan5.6CS425 – Boris Glavic

JDBC

■ JDBC is a Java API for communicating with database systems 
supporting SQL.

■ JDBC supports a variety of features for querying and updating 
data, and for retrieving query results.

■ JDBC also supports metadata retrieval, such as querying about 
relations present in the database and the names and types of 
relation attributes.

■ Model for communicating with the database:
● Open a connection
● Create a “statement” object
● Execute queries using the Statement object to send queries 

and fetch results
● Exception mechanism to handle errors



©Silberschatz, Korth and Sudarshan5.7CS425 – Boris Glavic

JDBC Code

public static void JDBCexample(String dbid, String userid, String passwd) 
{ 

try { 
Class.forName ("oracle.jdbc.driver.OracleDriver"); // load driver
Connection conn = DriverManager.getConnection(  // connect to server

"jdbc:oracle:thin:@db.yale.edu:2000:univdb", userid, passwd); 
Statement stmt = conn.createStatement(); // create Statement object

… Do Actual Work ….
stmt.close(); // close Statement and release resources
conn.close(); // close Connection and release resources

}
catch (SQLException sqle) { 

System.out.println("SQLException : " + sqle); // handle exceptions
}

}



©Silberschatz, Korth and Sudarshan5.8CS425 – Boris Glavic

JDBC Code (Cont.)

■ Update to database
try {

stmt.executeUpdate(
"insert into instructor values(’77987’, ’Kim’, ’Physics’, 

98000)");
} catch (SQLException sqle)
{

System.out.println("Could not insert tuple. " + sqle);
}

■ Execute query and fetch and print results
ResultSet rset = stmt.executeQuery(

"select dept_name, avg (salary)
from instructor
group by dept_name");

while (rset.next()) {
System.out.println(rset.getString("dept_name") + " " +

rset.getFloat(2));
}



©Silberschatz, Korth and Sudarshan5.9CS425 – Boris Glavic

JDBC Code Details       

■ Result stores the current row position in the result
● Pointing before the first row after executing the statement
● .next() moves to the next tuple

4Returns false if no more tuples
■ Getting result fields:

● rs.getString(“dept_name”) and rs.getString(1)
equivalent if dept_name is the first attribute in select 
result.

■ Dealing with Null values
● int a = rs.getInt(“a”);

if (rs.wasNull()) Systems.out.println(“Got null value”);



©Silberschatz, Korth and Sudarshan5.10CS425 – Boris Glavic

Prepared Statement

■ PreparedStatement pStmt = conn.prepareStatement(
"insert into instructor values(?,?,?,?)");

pStmt.setString(1, "88877");      pStmt.setString(2, "Perry");
pStmt.setString(3, "Finance");   pStmt.setInt(4, 125000);
pStmt.executeUpdate();    
pStmt.setString(1, "88878");
pStmt.executeUpdate();

■ For queries, use pStmt.executeQuery(), which returns a ResultSet
■ WARNING: always use prepared statements when taking an input 

from the user and adding it to a query
● NEVER create a query by concatenating strings which you 

get as inputs
● "insert into instructor values(’ " + ID + " ’, ’ " + name + " ’, " +

" ’ + dept name + " ’, " ’ balance + 
")“

● What if name is “D’Souza”?



©Silberschatz, Korth and Sudarshan5.11CS425 – Boris Glavic

SQL Injection

■ Suppose query is constructed using
● "select * from instructor where name = ’" + name + "’"

■ Suppose the user, instead of entering a name, enters:
● X’ or ’Y’ = ’Y

■ then the resulting statement becomes:
● "select * from instructor where name = ’" + "X’ or ’Y’ = ’Y" + 

"’"
● which is:

4select * from instructor where name = ’X’ or ’Y’ = ’Y’
● User could have even used

4X’; update instructor set salary = salary + 10000; --
■ Prepared statement internally uses:

"select * from instructor where name = ’X\’ or \’Y\’ = \’Y’
● Always use prepared statements, with user inputs as 

parameters



©Silberschatz, Korth and Sudarshan5.12CS425 – Boris Glavic

Metadata Features

■ ResultSet metadata
■ E.g., after executing query to get a ResultSet rs:

● ResultSetMetaData rsmd = rs.getMetaData();
for(int i = 1; i <= rsmd.getColumnCount(); i++) {

System.out.println(rsmd.getColumnName(i));
System.out.println(rsmd.getColumnTypeName(i));

}
■ How is this useful?



©Silberschatz, Korth and Sudarshan5.13CS425 – Boris Glavic

Metadata (Cont)

■ Database metadata
■ DatabaseMetaData dbmd = conn.getMetaData();

ResultSet rs = dbmd.getColumns(null, "univdb", "department", "%");
// Arguments to getColumns: Catalog, Schema-pattern, Table-pattern,
// and Column-Pattern
// Returns: One row for each column; row has a number of attributes
// such as COLUMN_NAME, TYPE_NAME
while( rs.next()) {

System.out.println(rs.getString("COLUMN_NAME"),
rs.getString("TYPE_NAME");

}
■ And where is this useful?



©Silberschatz, Korth and Sudarshan5.14CS425 – Boris Glavic

Transaction Control in JDBC

■ By default, each SQL statement is treated as a separate 
transaction that is committed automatically
● bad idea for transactions with multiple updates

■ Can turn off automatic commit on a connection
● conn.setAutoCommit(false);

■ Transactions must then be committed or rolled back explicitly
● conn.commit(); or
● conn.rollback();

■ conn.setAutoCommit(true) turns on automatic commit.



©Silberschatz, Korth and Sudarshan5.15CS425 – Boris Glavic

Other JDBC Features

■ Calling functions and procedures
● CallableStatement cStmt1 = conn.prepareCall("{? = call some 

function(?)}");
● CallableStatement cStmt2 = conn.prepareCall("{call some 

procedure(?,?)}");
■ Handling large object types

● getBlob() and getClob() that are similar to the getString() 
method, but return objects of type Blob and Clob, respectively

● get data from these objects by getBytes()
● associate an open stream with Java Blob or Clob object to 

update large objects
4blob.setBlob(int parameterIndex, InputStream inputStream).



©Silberschatz, Korth and Sudarshan5.16CS425 – Boris Glavic

SQLJ

■ JDBC is dynamic, errors cannot be caught by compiler
■ SQLJ: embedded SQL in Java

● #sql iterator deptInfoIter ( String dept name, int avgSal);
deptInfoIter iter = null;
#sql iter = { select dept_name, avg(salary) from instructor

group by dept name };
while (iter.next()) {

String deptName = iter.dept_name();
int avgSal = iter.avgSal();
System.out.println(deptName + " " + avgSal);

}
iter.close();



©Silberschatz, Korth and Sudarshan5.17CS425 – Boris Glavic

ODBC

■ Open DataBase Connectivity(ODBC) standard
● standard for application program to communicate with a 

database server.
● application program interface (API) to

4open a connection with a database,
4send queries and updates,
4get back results.

■ Applications such as GUI, spreadsheets, etc. can use ODBC
■ Was defined originally for Basic and C, versions available for 

many languages.



©Silberschatz, Korth and Sudarshan5.18CS425 – Boris Glavic

ODBC  (Cont.)

■ Each database system supporting ODBC provides a "driver" 
library that must be linked with the client program.

■ When client program makes an ODBC API call, the code in the 
library communicates with the server to carry out the requested 
action, and fetch results.

■ ODBC program first allocates an SQL environment, then a 
database connection handle.

■ Opens database connection using SQLConnect().  Parameters for 
SQLConnect:
● connection handle,
● the server to which to connect
● the user identifier, 
● password 

■ Must also specify types of arguments:
● SQL_NTS denotes previous argument is a null-terminated string.



©Silberschatz, Korth and Sudarshan5.19CS425 – Boris Glavic

ODBC Code

■ int ODBCexample()
{

RETCODE error;
HENV    env;     /* environment */ 
HDBC    conn;  /* database connection */ 
SQLAllocEnv(&env);
SQLAllocConnect(env, &conn);
SQLConnect(conn, “db.yale.edu", SQL_NTS, "avi", SQL_NTS, 

"avipasswd", SQL_NTS); 
{ …. Do actual work … }

SQLDisconnect(conn); 
SQLFreeConnect(conn); 
SQLFreeEnv(env); 

}



©Silberschatz, Korth and Sudarshan5.20CS425 – Boris Glavic

ODBC Code (Cont.)
■ Program sends SQL commands to database by using SQLExecDirect
■ Result tuples are fetched using SQLFetch()
■ SQLBindCol() binds C language variables to attributes of the query 

result
● When a tuple is fetched, its attribute values are automatically stored in 

corresponding C variables.
● Arguments to SQLBindCol()

4 ODBC stmt variable, attribute position in query result
4 The type conversion from SQL to C.  
4 The address of the variable. 
4 For variable-length types like character arrays, 

– The maximum length of the variable 
– Location to store actual length when a tuple is fetched.
– Note: A negative value returned for the length field indicates null 

value
■ Good programming requires checking results of every function call for 

errors; we have omitted most checks for brevity.



©Silberschatz, Korth and Sudarshan5.21CS425 – Boris Glavic

ODBC Code (Cont.)
■ Main body of program

char deptname[80];
float salary;
int lenOut1, lenOut2;
HSTMT stmt;
char * sqlquery = "select dept_name, sum (salary)

from instructor
group by dept_name";

SQLAllocStmt(conn, &stmt);
error = SQLExecDirect(stmt, sqlquery, SQL_NTS);
if (error == SQL SUCCESS) {

SQLBindCol(stmt, 1, SQL_C_CHAR, deptname , 80, &lenOut1);
SQLBindCol(stmt, 2, SQL_C_FLOAT, &salary, 0 , &lenOut2);
while (SQLFetch(stmt) == SQL_SUCCESS) {

printf (" %s %g\n", deptname, salary);
}

}
SQLFreeStmt(stmt, SQL_DROP);



©Silberschatz, Korth and Sudarshan5.22CS425 – Boris Glavic

ODBC Prepared Statements

■ Prepared Statement
● SQL statement prepared: compiled at the database
● Can have placeholders:  E.g.  insert into account values(?,?,?)
● Repeatedly executed with actual values for the placeholders

■ To prepare a statement
SQLPrepare(stmt, <SQL String>);

■ To bind parameters 
SQLBindParameter(stmt, <parameter#>, 

… type information and value omitted for simplicity..)
■ To execute the statement

retcode = SQLExecute( stmt); 
■ To avoid SQL injection security risk, do not create SQL strings 

directly using user input; instead use prepared statements to bind 
user inputs



©Silberschatz, Korth and Sudarshan5.23CS425 – Boris Glavic

More ODBC Features
■ Metadata features

● finding all the relations in the database and
● finding the names and types of columns of a query result or a 

relation in the database.
■ By default, each SQL statement is treated as a separate 

transaction that is committed automatically.
● Can turn off automatic commit on a connection

4SQLSetConnectOption(conn, SQL_AUTOCOMMIT, 0)} 
● Transactions must then be committed or rolled back explicitly by 

4SQLTransact(conn, SQL_COMMIT) or
4SQLTransact(conn, SQL_ROLLBACK)



©Silberschatz, Korth and Sudarshan5.24CS425 – Boris Glavic

ODBC Conformance Levels

■ Conformance levels specify subsets of the functionality defined 
by the standard.
● Core
● Level 1 requires support for metadata querying
● Level 2 requires ability to send and retrieve arrays of 

parameter values and more detailed catalog information.
■ SQL Call Level Interface (CLI) standard similar to ODBC 

interface, but with some minor differences.



©Silberschatz, Korth and Sudarshan5.25CS425 – Boris Glavic

ADO.NET

■ API designed for Visual Basic .NET and C#, providing database access 
facilities similar to JDBC/ODBC
● Partial example of ADO.NET code in C#

using System, System.Data, System.Data.SqlClient; 
SqlConnection conn = new SqlConnection(

“Data Source=<IPaddr>, Initial Catalog=<Catalog>”);
conn.Open();
SqlCommand cmd = new SqlCommand(“select * from students”, 

conn);
SqlDataReader rdr = cmd.ExecuteReader();
while(rdr.Read()) {

Console.WriteLine(rdr[0], rdr[1]); /* Prints result attributes 1 & 2 */
}
rdr.Close(); conn.Close();

■ Can also  access non-relational data sources such as 
● OLE-DB, XML data, Entity framework



©Silberschatz, Korth and Sudarshan5.26CS425 – Boris Glavic

Dynamic vs. Embedded SQL

Dynamic SQL Embedded SQL

code

DBMS

Compiler

Library

binary

Code with embeded SQL

DBMS

Preprocessor

Library

code

Compiler

binary



©Silberschatz, Korth and Sudarshan5.27CS425 – Boris Glavic

Embedded SQL

■ The SQL standard defines embeddings of SQL in a variety of 
programming languages such as C, Java, and Cobol.

■ A language to which SQL queries are embedded is referred to as 
a host language, and the SQL structures permitted in the host 
language comprise embedded SQL.

■ The basic form of these languages follows that of the System R 
embedding of SQL into PL/I.

■ EXEC SQL statement is used to identify embedded SQL request 
to the preprocessor

EXEC SQL <embedded SQL statement > END_EXEC

Note: this varies by language (for example, the Java embedding 
uses    # SQL { …. }; )



©Silberschatz, Korth and Sudarshan5.28CS425 – Boris Glavic

Example Query

■ Specify the query in SQL and declare a cursor for it
EXEC SQL
declare c cursor for 
select ID, name
from student
where tot_cred > :credit_amount

END_EXEC

■ From within a host language, find the ID and name of 
students who have completed more than the number of 
credits stored in variable credit_amount.



©Silberschatz, Korth and Sudarshan5.29CS425 – Boris Glavic

Embedded SQL (Cont.)

■ The open statement causes the query to be evaluated
EXEC SQL open c END_EXEC

■ The fetch statement causes the values of one tuple in the query 
result to be placed on host language variables.

EXEC SQL fetch c into :si, :sn END_EXEC
Repeated calls to fetch get successive tuples in the query result

■ A variable called SQLSTATE in the SQL communication area 
(SQLCA) gets set to ‘02000’ to indicate no more data is 
available

■ The close statement causes the database system to delete the 
temporary relation that holds the result of the query.

EXEC SQL close c END_EXEC
Note: above details vary with language.  For example, the Java              
embedding defines Java iterators to step through result tuples.



©Silberschatz, Korth and Sudarshan5.30CS425 – Boris Glavic

Updates Through Cursors

■ Can update tuples fetched by cursor by declaring that the cursor 
is for update

declare c cursor for
select *
from instructor
where dept_name = ‘Music’

for update
■ To update tuple at the current location of cursor c

update instructor
set salary = salary + 100
where current of c



©Silberschatz, Korth and Sudarshan5.31CS425 – Boris Glavic

Procedural Constructs in SQL



©Silberschatz, Korth and Sudarshan5.32CS425 – Boris Glavic

Procedural Extensions and Stored Procedures

■ SQL provides a module language
● Permits definition of procedures in SQL, with if-then-else 

statements, for and while loops, etc.
■ Stored Procedures

● Can store procedures in the database
● then execute them using the call statement
● permit external applications to operate on the database 

without knowing about internal details
■ Object-oriented aspects of these features are covered in Chapter 

22 (Object Based Databases) in the textbook



©Silberschatz, Korth and Sudarshan5.33CS425 – Boris Glavic

Why have procedural extensions?

■ Shipping data between a database server and application 
program (e.g., through network connection) is costly

■ Converting data from the database internal format into a format 
understood by the application programming language is costly

■ Example:
● Use Java to retrieve all users and their friend-relationships from a 

friends relation representing a world-wide social network with 
10,000,000 users

● Compute the transitive closure
4 All pairs of users connects through a path of friend relationships. 

E.g., (Peter, Magret) if Peter is a friend of Walter who is a friend 
of Magret

● Return pairs of users from Chicago – say 4000 pairs
● 1) cannot be expressed (efficiently) as SQL query, 2) result is small

4 -> save by executing this on the DB server



©Silberschatz, Korth and Sudarshan5.34CS425 – Boris Glavic

Functions and Procedures

■ SQL:1999 supports functions and procedures
● Functions/procedures can be written in SQL itself, or in an 

external programming language.
● Functions are particularly useful with specialized data types such 

as images and geometric objects.
4Example: functions to check if polygons overlap, or to 

compare images for similarity.
● Some database systems support table-valued functions, which 

can return a relation as a result.
■ SQL:1999 also supports a rich set of imperative constructs, including

● Loops, if-then-else, assignment
■ Many databases have proprietary procedural extensions to SQL that 

differ from SQL:1999.



©Silberschatz, Korth and Sudarshan5.35CS425 – Boris Glavic

SQL Functions

■ Define a function that, given the name of a department, returns 
the count of the number of instructors in that department.

create function dept_count (dept_name varchar(20))
returns integer
begin

declare d_count integer;
select count (* ) into d_count
from instructor
where instructor.dept_name = dept_name;
return d_count;

end
■ Find the department name and budget of all departments with 

more that 12 instructors.
select dept_name, budget
from department
where dept_count (dept_name ) > 1



©Silberschatz, Korth and Sudarshan5.36CS425 – Boris Glavic

Table Functions
■ SQL:2003 added functions that return a relation as a result
■ Example: Return all accounts owned by a given customer

create function instructors_of (dept_name char(20)
returns table ( ID varchar(5),

name varchar(20),
dept_name varchar(20),
salary numeric(8,2))

return table
(select ID, name, dept_name, salary
from instructor
where instructor.dept_name = instructors_of.dept_name)

■ Usage
select *
from table (instructors_of (‘Music’))



©Silberschatz, Korth and Sudarshan5.37CS425 – Boris Glavic

SQL Procedures
■ The dept_count function could instead be written as procedure:

create procedure dept_count_proc (in dept_name varchar(20), 
out d_count integer)

begin
select count(*) into d_count
from instructor
where instructor.dept_name = dept_count_proc.dept_name

end
■ Procedures can be invoked either from an SQL procedure or from 

embedded SQL, using the call statement.
declare d_count integer;
call dept_count_proc( ‘Physics’, d_count);

Procedures and functions can be invoked also from dynamic SQL
■ SQL:1999 allows more than one function/procedure of the same 

name (called name overloading), as long as the number of 
arguments differ, or at least the types of the arguments differ



©Silberschatz, Korth and Sudarshan5.38CS425 – Boris Glavic

Procedural Constructs

■ Warning: most database systems implement their own variant of the 
standard syntax below
● read your system manual to see what works on your system

■ Compound statement: begin … end, 
● May contain multiple SQL statements between begin and end.
● Local variables can be declared within a compound statements

■ While and repeat statements :
declare n integer default 0;
while n < 10 do

set n = n + 1
end while

repeat
set n = n  – 1

until n = 0
end repeat



©Silberschatz, Korth and Sudarshan5.39CS425 – Boris Glavic

Procedural Constructs (Cont.)

■ For loop
● Permits iteration over all results of a query
● Example: 

declare n  integer default 0;
for r  as

select budget from department
where dept_name = ‘Music’

do
set n = n - r.budget

end for



©Silberschatz, Korth and Sudarshan5.40CS425 – Boris Glavic

Procedural Constructs (cont.)

■ Conditional statements  (if-then-else)
SQL:1999 also supports a case statement similar to C case statement

■ Example procedure: registers student after ensuring classroom capacity 
is not exceeded
● Returns 0 on success and -1 if capacity is exceeded
● See book for details

■ Signaling of exception conditions, and declaring handlers for exceptions
declare out_of_classroom_seats condition
declare exit handler for out_of_classroom_seats
begin
…
..  signal out_of_classroom_seats
end

● The handler here is exit -- causes enclosing begin..end to be exited
● Other actions possible on exception



©Silberschatz, Korth and Sudarshan5.41CS425 – Boris Glavic

External Language Functions/Procedures

■ SQL:1999 permits the use of functions and procedures written in 
other languages such as C or C++

■ Declaring external language procedures and functions

create procedure dept_count_proc(in dept_name varchar(20),
out count integer)

language C
external name ’ /usr/avi/bin/dept_count_proc’

create function dept_count(dept_name varchar(20))
returns integer
language C
external name ‘/usr/avi/bin/dept_count’



©Silberschatz, Korth and Sudarshan5.42CS425 – Boris Glavic

External Language Routines (Cont.)

■ Benefits of external language functions/procedures:  
● more efficient for many operations, and more expressive 

power.
■ Drawbacks

● Code to implement function may need to be loaded into 
database system and executed in the database system’s 
address space.
4 risk of accidental corruption of database structures
4security risk, allowing users access to unauthorized data

● There are alternatives, which give good security at the cost of 
potentially worse performance.

● Direct execution in the database system’s space is used 
when efficiency is more important than security.



©Silberschatz, Korth and Sudarshan5.43CS425 – Boris Glavic

Security with External Language Routines

■ To deal with security problems
● Use sandbox techniques

4E.g., use a safe language like Java, which cannot be 
used to    access/damage other parts of the database 
code.

● Or, run external language functions/procedures in a 
separate process, with no access to the database process’
memory.
4Parameters and results communicated via inter-process 

communication
■ Both have performance overheads
■ Many database systems support both above approaches as 

well as direct executing in database system address space.



©Silberschatz, Korth and Sudarshan5.44CS425 – Boris Glavic

Triggers



©Silberschatz, Korth and Sudarshan5.45CS425 – Boris Glavic

Triggers

■ A trigger is a statement that is executed automatically by 
the system as a side effect of a modification to the 
database.

■ To design a trigger mechanism, we must:
● Specify the conditions under which the trigger is to be 

executed.
● Specify the actions to be taken when the trigger 

executes.
■ Triggers introduced to SQL standard in SQL:1999, but 

supported even earlier using non-standard syntax by 
most databases.
● Syntax illustrated here may not work exactly on your 

database system; check the system manuals



©Silberschatz, Korth and Sudarshan5.46CS425 – Boris Glavic

Trigger Example 

■ E.g. time_slot_id is not a primary key of timeslot, so we cannot 
create a foreign key constraint from section to timeslot.

■ Alternative: use triggers on section and timeslot to enforce integrity 
constraints
create trigger timeslot_check1 after insert on section
referencing new row as nrow
for each row
when (nrow.time_slot_id not in (

select time_slot_id
from time_slot)) /* time_slot_id not present in time_slot */

begin
rollback

end;



©Silberschatz, Korth and Sudarshan5.47CS425 – Boris Glavic

Trigger Example Cont.

create trigger timeslot_check2 after delete on timeslot
referencing old row as orow
for each row
when (orow.time_slot_id not in (

select time_slot_id
from time_slot)
/* last tuple for time slot id deleted from time slot */

and orow.time_slot_id in (
select time_slot_id
from section)) /* and time_slot_id still referenced from section*/

begin
rollback

end;



©Silberschatz, Korth and Sudarshan5.48CS425 – Boris Glavic

Triggering Events and Actions in SQL

■ Triggering event can be insert, delete or update
■ Triggers on update can be restricted to specific attributes

● E.g., after update of takes on grade
■ Values of attributes before and after an update can be 

referenced
● referencing old row as : for deletes and updates
● referencing new row as  : for inserts and updates

■ Triggers can be activated before an event, which can serve as 
extra constraints.  E.g. convert blank grades to null.

create trigger setnull_trigger before update of takes
referencing new row as nrow
for each row
when (nrow.grade = ‘ ‘)
begin atomic

set nrow.grade = null;
end;



©Silberschatz, Korth and Sudarshan5.49CS425 – Boris Glavic

Trigger to Maintain credits_earned value

■ create trigger credits_earned after update of takes on 
(grade)
referencing new row as nrow
referencing old row as orow
for each row
when nrow.grade <> ’F’ and nrow.grade is not null

and (orow.grade = ’F’ or orow.grade is null)
begin atomic

update student
set tot_cred= tot_cred + 

(select credits
from course
where course.course_id= nrow.course_id)

where student.id = nrow.id;
end;



©Silberschatz, Korth and Sudarshan5.50CS425 – Boris Glavic

Statement Level Triggers

■ Instead of executing a separate action for each affected 
row, a single action can be executed for all rows affected by 
a transaction
● Use     for each statement      instead of    for each row
● Use     referencing old table or   referencing new 

table to refer to temporary tables  (called transition 
tables) containing the affected rows

● Can be more efficient when dealing with SQL 
statements that update a large number of rows



©Silberschatz, Korth and Sudarshan5.51CS425 – Boris Glavic

When Not To Use Triggers

■ Triggers were used earlier for tasks such as 
● maintaining summary data (e.g., total salary of each department)
● Replicating databases by recording changes to special relations 

(called change or delta relations) and having a separate process 
that applies the changes over to a replica 

■ There are better ways of doing these now:
● Databases today provide built in materialized view facilities to 

maintain summary data
● Databases provide built-in support for replication

■ Encapsulation facilities can be used instead of triggers in many cases
● Define methods to update fields
● Carry out actions as part of the update methods instead of 

through a trigger 



©Silberschatz, Korth and Sudarshan5.52CS425 – Boris Glavic

When Not To Use Triggers

■ Risk of unintended execution of triggers, for example, when
● loading data from a backup copy
● replicating updates at a remote site
● Trigger execution can be disabled before such actions.

■ Other risks with triggers:
● Error leading to failure of critical transactions that set off the 

trigger
● Cascading execution



©Silberschatz, Korth and Sudarshan5.53CS425 – Boris Glavic

Recursive Queries



©Silberschatz, Korth and Sudarshan5.54CS425 – Boris Glavic

Recursion in SQL
■ SQL:1999 permits recursive view definition
■ Example: find which courses are a prerequisite, whether 

directly or indirectly, for a specific course 
with recursive rec_prereq(course_id, prereq_id) as (

select course_id, prereq_id
from prereq

union
select rec_prereq.course_id, prereq.prereq_id, 
from rec_rereq, prereq
where rec_prereq.prereq_id = prereq.course_id

)
select ∗
from rec_prereq;
This example view, rec_prereq, is called the transitive closure
of the prereq relation



©Silberschatz, Korth and Sudarshan5.55CS425 – Boris Glavic

Recursion in SQL - Syntax
■ General form

with recursive R as (
init_query

union
recusive_step)

select ∗
from R;

■ init_query returns the initial content of R
■ recursive_step is a query that mentions R exactly once in the 

FROM clause



©Silberschatz, Korth and Sudarshan5.56CS425 – Boris Glavic

Recursion in SQL - Semantics
■ General form

with recursive R as (
init_query

union
recusive_step)

select ∗
from R;

■ Fixpoint computation
● R0 = result of init_query
● In step i: Ri is computed as 

4Ri-1 union recursive_step(Ri-1)

● The computation stops when recursive_step(Ri-1) is 
the empty set, i.e., Ri-1 = Ri



©Silberschatz, Korth and Sudarshan5.57CS425 – Boris Glavic

The Power of Recursion

■ Recursive views make it possible to write queries, such as 
transitive closure queries, that cannot be written without recursion 
or iteration.
● Intuition:  Without recursion, a non-recursive non-iterative 

program can perform only a fixed number of joins of prereq
with itself
4This can give only a fixed number of levels of managers
4Given a fixed non-recursive query, we can construct a 

database with a greater number of levels of prerequisites on 
which the query will not work

4Alternative: write a procedure to iterate as many times as 
required
– See procedure findAllPrereqs in book



©Silberschatz, Korth and Sudarshan5.58CS425 – Boris Glavic

The Power of Recursion

■ Computing transitive closure using iteration, adding successive 
tuples to rec_prereq
● The next slide shows a prereq relation
● Each step of the iterative process constructs an extended 

version of rec_prereq from its recursive definition.  
● The final result is called the fixed point of the recursive view 

definition.
■ Recursive views are monotonic.  That is, 

● if we add tuples to prereq the view rec_prereq contains all of 
the tuples it contained before, plus possibly more



©Silberschatz, Korth and Sudarshan5.59CS425 – Boris Glavic

Example of Fixed-Point Computation



©Silberschatz, Korth and Sudarshan5.60CS425 – Boris Glavic

Another Recursion Example

■ Given relation 
manager(employee_name, manager_name)

■ Find all employee-manager pairs, where the employee reports to the 
manager directly or indirectly (that is manager’s manager, manager’s 
manager’s manager, etc.)

with recursive empl (employee_name, manager_name ) as (
select employee_name, manager_name
from manager

union
select manager.employee_name, empl.manager_name
from manager, empl
where manager.manager_name = empl.employe_name)

select * 
from empl

This example view, empl, is the transitive closure of the manager 
relation



©Silberschatz, Korth and Sudarshan5.61CS425 – Boris Glavic

Recap

■ Programming Language Interfaces for Databases
● Dynamic SQL (e.g., JDBC, ODBC)
● Embedded SQL
● SQL Injection

■ Procedural Extensions of SQL
● Functions and Procedures

■ External Functions/Procedures
● Written in programming language (e.g., C)

■ Triggers
● Events (insert, …)
● Conditions (WHEN)
● per statement / per row
● Accessing old/new table/row versions

■ Recursive Queries



modified from:
Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use 

End of Chapter



©Silberschatz, Korth and Sudarshan5.63CS425 – Boris Glavic

Outline

■ Introduction
■ Relational Data Model
■ Formal Relational Languages (relational algebra)
■ SQL - Advanced
■ Database Design – ER model
■ Transaction Processing, Recovery, and Concurrency Control
■ Storage and File Structures
■ Indexing and Hashing
■ Query Processing and Optimization


