





















































































# Let's design an ER-model for parts of the university database

Partially taken from Klaus R. Dittrich

modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan





### **Weak Entity Sets**

- An entity set that does not have a primary key is referred to as a weak entity set.
- The existence of a weak entity set depends on the existence of a identifying entity set
  - It must relate to the identifying entity set via a total, one-to-many relationship set from the identifying to the weak entity set
  - Identifying relationship depicted using a double diamond
- The discriminator (or partial key) of a weak entity set is the set of attributes that distinguishes among all the entities of a weak entity set that are associated with the same entity of the identifying entity set
- The primary key of a weak entity set is formed by the primary key of the strong entity set on which the weak entity set is existence dependent, plus the weak entity set's discriminator.

S425 - Fall 2016 - Boris Glavic

7.45

Silberschatz, Korth and Sudarsh





### **Weak Entity Sets (Cont.)**

- Note: the primary key of the strong entity set is not explicitly stored with the weak entity set, since it is implicit in the identifying relationship.
- If course\_id were explicitly stored, section could be made a strong entity, but then the relationship between section and course would be duplicated by an implicit relationship defined by the attribute course\_id common to course and section

CASE Fall 2010 Basis Clause

7.47

©Silberschatz, Korth and Sudarshan





























### **Binary Vs. Non-Binary Relationships**

- Some relationships that appear to be non-binary may be better represented using binary relationships
  - E.g., A ternary relationship parents, relating a child to his/her father and mother, is best replaced by two binary relationships, father and mother
    - Using two binary relationships allows partial information (e.g., only mother being know)
  - But there are some relationships that are naturally non-binary
    - Example: proj\_guide

CS425 - Fall 2016 - Boris Glavio

7.61





## Converting Non-Binary Relationships (Cont.)

- Also need to translate constraints
  - Translating all constraints may not be possible
  - There may be instances in the translated schema that cannot correspond to any instance of R
    - Exercise: add constraints to the relationships RA, RB and Rc to ensure that a newly created entity corresponds to exactly one entity in each of entity sets A, B and C
  - We can avoid creating an identifying attribute by making E a weak entity set (described shortly) identified by the three relationship sets

S425 - Fall 2016 - Boris Glavic

7.63

@Silberschatz, Korth and Sudarshan



### Converting Non-Binary Relationships: Is the New Entity Set E Necessary?

- Yes, because a non-binary relation ship stores more information that any number of binary relationships
  - Consider again the example (a) below
  - Replace R with three binary relationships:
    - 1.  $\it RAB$ , relating A and B 2.  $\it RBC$ , relating B and C 3.  $\it RAC$ , relating A and C
  - For each relationship (ai , bi , ci) in R, create
    - 1. add (ai , bi) to RAB
    - 2. add (bi, ci) to RBC
    - 3. add (ai , ci) to Rac
  - Consider R = order, A = supplier, B = item, C = customer

(Gunnar, chainsaw, Bob) – Bob ordered a chainsaw from Gunnar

(Gunnar, chainsaw), (chainsaw, Bob), (Gunnar, Bob)

Gunnar supplies chainsaws, Bob ordered a chainsaw, Bob ordered something from Gunnar. E.g., we do not know what Bob ordered from Gunnar.

Fall 2016 – Boris Glavic

@Silberschatz, Korth and Sud

(a)



### **ER-model to Relational Summary**

- Rule 1) Strong entity E
  - Create relation with attributes of E
- Primary key is equal to the PK of E
- Rule 2) Weak entity W identified by E through relationship R
  - Create relation with attributes of W and R and PK(E).
  - Set PK to discriminator attributes combined with PK(E). PK(E) is a foreign key to E.
- Rule 3) Binary relationship R between A and B: one-to-one
  - If no side is total add PK of A to as foreign key in B or the other way around. Add any attributes of the relationship R to A respective B.
  - If one side is total add PK of the other-side as foreign key. Add any attributes of the relationship R to the total side.
  - If both sides are total merge the two relation into a new relation E and choose either PK(A) as PK(B) as the new PK. Add any attributes of the relationship R to the new relation E.

S425 – Fall 2016 – Boris Glavi

7.65

©Silberschatz, Korth and Sudarshan



### **ER-model to Relational Summary (Cont.)**

- Rule 4) Binary relationship R between A and B: one-to-many/many-toone
  - Add PK of the "one" side as foreign key to the "many" side.
  - Add any attributes of the relationship R to the "many" side.
- Rule 5) Binary relationship R between A and B: many-to-many
  Create a new relation R.
  - Add PK's of A and B as attributes + plus all attributes of R.
- The primary key of the relationship is PK(A) + PK(B). The PK attributes of A/B form a foreign key to A/B
- Rule 6) N-ary relationship R between E1 ... En
  - Create a new relation.
  - Add all the PK's of E<sub>1</sub> ... E<sub>n</sub>. Add all attributes of R to the new relation.
  - The primary key or R is PK(E<sub>1</sub>) ... PK(E<sub>n</sub>). Each PK(E) is a foreign key to the corresponding relation.

S425 - Fall 2016 - Boris Glavic

7.66

@Silberschatz, Korth and Sudarsha



































































































































