

CS425 – Fall 2013

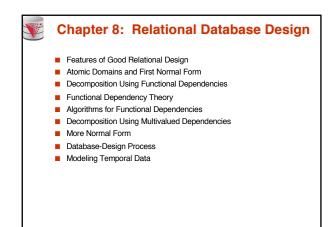
Boris Glavic

Chapter 8: Relational Database Design

modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use



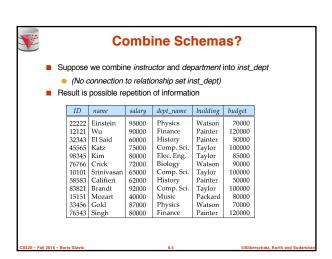
What is Good Design?

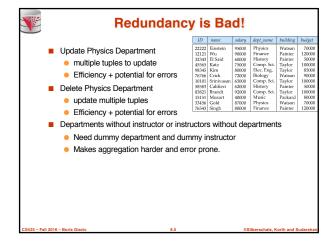
1) Easier: What is Bad Design?

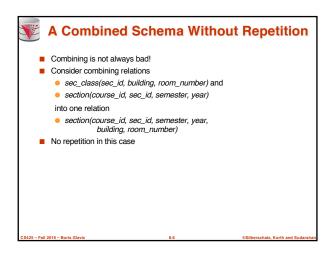
modified from:

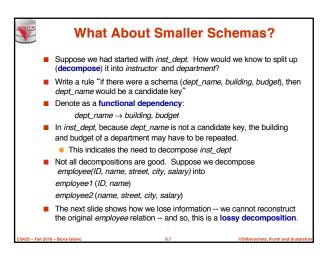
Database System Concepts, 6th Ed.

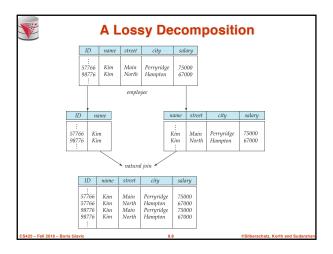
©Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use

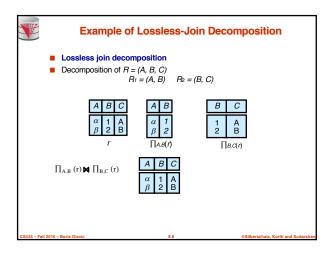


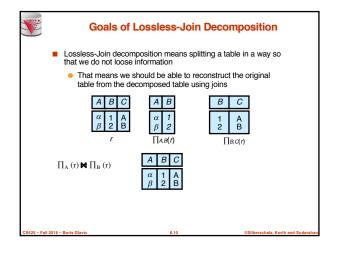


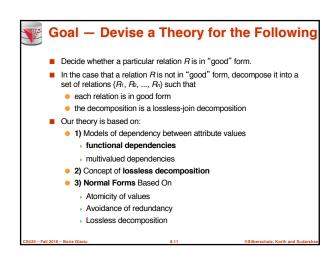


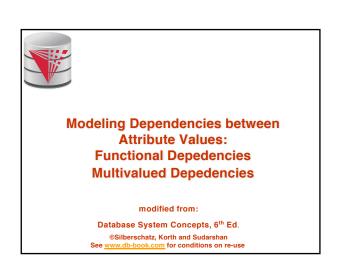












Functional Dependencies

- Constraints on the set of legal instances for a relation schema.
- Require that the value for a certain set of attributes determines uniquely the value for another set of attributes.
- A functional dependency is a generalization of the notion of a key.
 - Thus, every key is a functional dependency

Functional Dependencies (Cont.)

- Let R be a relation schema
 - $\alpha \subseteq R$ and $\beta \subseteq R$
- The functional dependency

 $\begin{array}{l} \alpha \rightarrow \pmb{\beta} \\ \text{holds on } R \text{ if and only if for any legal relations } \textit{r}(R), \text{ whenever any two tuples } \textit{h} \text{ and } \textit{b} \text{ of } \textit{r} \text{ agree on the attributes } \alpha, \text{ they also agree} \\ \text{on the attributes } \beta. \text{ That is,} \end{array}$

- $t[\alpha] = t[\alpha] \implies t[\beta] = t[\beta]$ Example: Consider r(A,B) with the following instance of r.

■ On this instance, $A \rightarrow B$ does **NOT** hold, but $B \rightarrow A$ does hold.

Functional Dependencies (Cont.)

- Let R be a relation schema
 - $\alpha \subseteq R$ and $\beta \subseteq R$
- The functional dependency

 $\begin{array}{c} \alpha \rightarrow \pmb{\beta} \\ \text{holds on } R \text{ if and only if for any legal relations } r(R), \text{ whenever any two tuples } h \text{ and } b \text{ of } r \text{ agree on the attributes } \alpha, \text{ they also agree on the attributes } \beta. \text{ That is,} \end{array}$

 $t_1[\alpha] = t_2[\alpha] \Rightarrow t_1[\beta] = t_2[\beta]$

■ Example: Consider r(A,B) with the following instance of r.

■ On this instance, $A \rightarrow B$ does **NOT** hold, but $B \rightarrow A$ does hold.

Functional Dependencies (Cont.)

- K is a superkey for relation schema R if and only if $K \rightarrow R$
- K is a candidate key for R if and only if
 - $K \rightarrow R$, and
 - for no $\alpha \subset K$, $\alpha \to R$
- Functional dependencies allow us to express constraints that cannot be expressed using superkeys. Consider the schema:

inst_dept (ID, name, salary, dept_name, building, budget).

We expect these functional dependencies to hold:

dept_name→ building

ID → building

but would not expect the following to hold:

 $dept_name \rightarrow salary$

Use of Functional Dependencies

- We use functional dependencies to:
 - test relations to see if they are legal under a given set of functional dependencies.
 - \rightarrow If a relation r is legal under a set F of functional dependencies, we say that r satisfies F.
 - specify constraints on the set of legal relations
 - We say that Fholds on R if all legal relations on R satisfy the set of functional dependencies F.
- Note: A specific instance of a relation schema may satisfy a functional dependency even if the functional dependency does not hold on all legal instances.
 - For example, a specific instance of instructor may, by chance, satisfy

Functional Dependencies (Cont.)

- A functional dependency is trivial if it is satisfied by all instances of a relation
 - Example:
 - ID, name → ID
 - name → name
 - In general, $\alpha \rightarrow \beta$ is trivial if $\beta \subseteq \alpha$

Closure of a Set of Functional Dependencies

- Given a set F of functional dependencies, there are certain other functional dependencies that are logically implied by F.
 - For example: If $A \rightarrow B$ and $B \rightarrow C$, then we can infer that $A \rightarrow C$
- The set of all functional dependencies logically implied by F is the closure of F.
- We denote the closure of F by F⁺.
- F⁺ is a superset of F.

8.19

Silberschatz, Korth and Sudarsha

Functional-Dependency Theory

- We now consider the formal theory that tells us which functional dependencies are implied logically by a given set of functional dependencies.
- How do we get the initial set of FDs?
 - Semantics of the domain we are modelling
 - Has to be provided by a human (the designer)
- Example:
 - Relation Citizen(SSN, FirstName, LastName, Address)
 - We know that SSN is unique and a person has a a unique SSN
 - Thus, SSN → FirstName, LastName

CS425 - Fall 2016 - Boris Glavic

©Silberschatz, K

Closure of a Set of Functional Dependencies

- We can find F*. the closure of F, by repeatedly applying Armstrong's Axioms:
 - if $\beta \subseteq \alpha$, then $\alpha \to \beta$

(reflexivity)

- if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- (augmentation)
- if $\alpha \to \beta$, and $\beta \to \gamma$, then $\alpha \to \gamma$ (transitivity)
- These rules are
 - sound (generate only functional dependencies that actually hold), and
 - complete (generate all functional dependencies that hold).

S425 - Fall 2016 - Boris Glavic

8.21

Iberschatz, Korth and Sudar

Example

- - $CG \rightarrow H$ $CG \rightarrow I$ $B \rightarrow H$
- some members of F⁺
 - $\bullet \ A \to H$
 - ▶ by transitivity from $A \rightarrow B$ and $B \rightarrow H$
 - $AG \rightarrow I$
 - by augmenting $A \rightarrow C$ with G, to get $AG \rightarrow CG$ and then transitivity with $CG \rightarrow I$
 - CG \ HI
 - by augmenting $CG \rightarrow I$ to infer $CG \rightarrow CGI$, and augmenting of $CG \rightarrow H$ to infer $CGI \rightarrow HI$, and then transitivity

- Fall 2016 – Boris Glavic

©Silberschatz, Korth and Sud

Prove Additional Implications

- Prove or disprove the following rules from Amstrong's axioms
 - 1) $A \rightarrow B$, C implies $A \rightarrow B$ and $A \rightarrow C$
 - 2) $A \rightarrow B$ and $A \rightarrow C$ implies $A \rightarrow B$, C
 - 3) A, $B \rightarrow B$, C implies $A \rightarrow C$
 - ullet 4) A ightarrow B and C ightarrow D implies A, C ightarrow B, D

Procedure for Computing F⁺

■ To compute the closure of a set of functional dependencies F:

 $F^+ = F$

repeat

for each functional dependency f in F⁺
apply reflexivity and augmentation rules on f
add the resulting functional dependencies to F⁺
for each pair of functional dependencies f and ½ in F⁺
if f and ½ can be combined using transitivity
then add the resulting functional dependency to j

then add the resulting functional dependency to F^+ until F^+ does not change any further

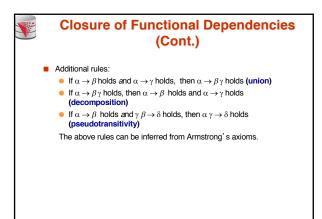
NOTE: We shall see an alternative more efficient procedure for this task later

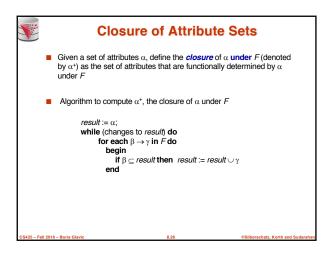
CS425 - Fall 2016 - Boris Glavic

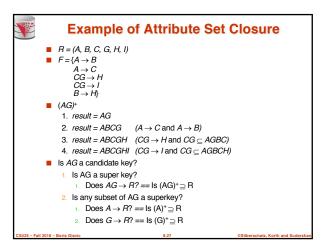
©Silberschatz, Korth and Suda

S425 - Fall 2016 - Boris Glavio

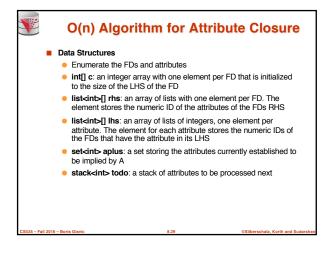
©Silberso











```
O(n) Algorithm for Attribute Closure
Algorithm

    Initialize c, rhs, lhs, aplus to the emptyset, todo to A

   while(!todo.isEmpty) {
      curA = todo.pop():
       anlus.add(curA):
                             // add curA to result
       for fd in lhs[curA] { // update how many attribute found for
   LHS
                             // found a LHS attr for fd
           if (c[fd] == 0) {
              remove(lhs[curA], fd); // avoid firing twice
              for newA in rhs[fd] { // add implied attributes
                  if (!aplus[newA]) // if attribute is new add to todo
                      todo.push(newA);
                  aplus.add(newA);
             }
          }
```


Canonical Cover

- Sets of functional dependencies may have redundant dependencies that can be inferred from the others
 - For example: $A \rightarrow C$ is redundant in: $\{A \rightarrow B, B \rightarrow C, A \rightarrow C\}$
 - Parts of a functional dependency may be redundant
 - E.g.: on RHS: $\{A \rightarrow B, B \rightarrow C, A \rightarrow CD\}$ can be simplified
 - $\{A \rightarrow B, B \rightarrow C, A \rightarrow D\}$
 - E.g.: on LHS: $\{A \rightarrow B, B \rightarrow C, AC \rightarrow D\}$ can be simplified to
 - $\{A \rightarrow B, B \rightarrow C, A \rightarrow D\}$
- Intuitively, a canonical cover of F is a "minimal" set of functional dependencies equivalent to F, having no redundant dependencies or redundant parts of dependencies

Extraneous Attributes

- Consider a set F of functional dependencies and the functional
 - Attribute A is **extraneous** in α if $A \in \alpha$ and F logically implies $(F \{\alpha \rightarrow \beta\}) \cup \{(\alpha A) \rightarrow \beta\}$.
 - Attribute A is **extraneous** in β if $A \in \beta$ and the set of functional dependencies $(F - \{\alpha \to \beta\}) \cup \{\alpha \to (\beta - A)\}$ logically implies F.
- Note: implication in the opposite direction is trivial in each of the cases above, since a "stronger" functional dependency always implies a weaker one
- **Example:** Given $F = \{A \rightarrow C, AB \rightarrow C\}$
 - B is extraneous in AB → C because {A → C, AB → C} logically implies A → C (I.e. the result of dropping B from AB → C).
- Example: Given $F = \{A \rightarrow C, AB \rightarrow CD\}$
 - C is extraneous in $AB \rightarrow CD$ since $AB \rightarrow C$ can be inferred even after deleting C

Testing if an Attribute is Extraneous

- Consider a set F of functional dependencies and the functional dependency $\alpha \to \beta$ in F.
- To test if attribute $A \in \alpha$ is extraneous in α
 - 1. compute $(\{\alpha\} A)^+$ using the dependencies in F
 - 2. check that $(\{\alpha\} A)^+$ contains β ; if it does, A is extraneous in α
- To test if attribute $A \in \beta$ is extraneous in β
 - 1. compute α^+ using only the dependencies in $\mathsf{F}' = (\mathsf{F} - \{\alpha \to \beta\}) \cup \{\alpha \to (\beta - A)\},\$
 - 2. check that α^+ contains A; if it does, A is extraneous in β

Canonical Cover

- A canonical cover for F is a set of dependencies Fc such that
 - F logically implies all dependencies in Fc, and
 - F_c logically implies all dependencies in F, and
 - No functional dependency in F_c contains an extraneous attribute, and
 - Each left side of functional dependency in F_c is unique.
- To compute a canonical cover for F:

repeat Use the union rule to replace any dependencies in F $\alpha_1 \rightarrow \beta_1$ and $\alpha_1 \rightarrow \beta_2$ with $\alpha_1 \rightarrow \beta_1$ β_2 Find a functional dependency $\alpha \rightarrow \beta$ with an extraneous attribute either in α or in β /* Note: test for extraneous attributes done using F_c , not F*/ If an extraneous attribute is found, delete it from $\alpha \rightarrow \beta$ until F closes not change

Note: Union rule may become applicable after some extraneous attributes have been deleted, so it has to be re-applied

Computing a Canonical Cover

- R = (A, B, C) $F = \{A \rightarrow BC$ $B \rightarrow C$ $A \rightarrow B$ $AB \rightarrow C\}$
- Combine $A \to BC$ and $A \to B$ into $A \to BC$ • Set is now $\{A \rightarrow BC, B \rightarrow C, AB \rightarrow C\}$
- A is extraneous in $AB \rightarrow C$
 - Check if the result of deleting A from AB → C is implied by the other dependencies
 - Yes: in fact, B → C is already present!
- Set is now $\{A \rightarrow BC, B \rightarrow C\}$ C is extraneous in A → BC

 - Check if $A \to C$ is logically implied by $A \to B$ and the other dependencies Yes: using transitivity on A → B and B → C.
 - Can use attribute closure of A in more complex cases
- The canonical cover is:

Lossless Join-Decomposition Dependency Preservation

modified from:

Database System Concepts, 6th Ed

©Silberschatz, Korth and Sudarshan

So Far

- Theory of dependencies
- What is missing?
 - When is a decomposition loss-less
 - Lossless-join decomposition
 - Dependencies on the input are preserved
- What else is missing?
 - Define what constitutes a good relation
 - Normal forms
 - How to check for a good relation
 - Test normal forms
 - How to achieve a good relation
 - Translate into normal form
 - Involves decomposition

S425 - Fall 2016 - Boris Glavi

8.37

.....

Lossless-join Decomposition

■ For the case of $R = (R_1, R_2)$, we require that for all possible relation instances r on schema R

 $r = \prod_{R_1} (r) \mathbf{M} \prod_{R_2} (r)$

- A decomposition of R into R₁ and R₂ is lossless join if at least one of the following dependencies is in F³:
 - $R_1 \cap R_2 \rightarrow R_1$
 - $R_1 \cap R_2 \rightarrow R_2$
- The above functional dependencies are a **sufficient** condition for lossless join decomposition; the dependencies are a **necessary** condition only if all constraints are functional dependencies

CS425 - Fall 2016 - Boris G

©Silberschatz, Korth and Sur

Example

- R = (A, B, C) $F = \{A \rightarrow B, B \rightarrow C\}$
 - Can be decomposed in two different ways
- \blacksquare R₁ = (A, B), R₂ = (B, C)
 - Lossless-join decomposition:

 $R_1 \cap R_2 = \{B\} \text{ and } B \to BC$

- Dependency preserving
- \blacksquare R₁ = (A, B), R₂ = (A, C)
 - Lossless-join decomposition:

 $R_1 \cap R_2 = \{A\} \text{ and } A \to AB$

• Not dependency preserving (cannot check $B \rightarrow C$ without computing R^{\bowtie} R_2)

S425 - Fall 2016 - Boris Glavio

8.39

Silberschatz, Korth and Sudars

Dependency Preservation

- Let F_i be the set of dependencies F + that include only attributes in B_i.
 - A decomposition is **dependency preserving**, if $(F_1 \cup F_2 \cup ... \cup F_n)^+ = F^+$
 - If it is not, then checking updates for violation of functional dependencies may require computing joins, which is expensive.

CS425 - Fall 2016 - Boris Glavic

@Silberschatz, Korth and Suda

Testing for Dependency Preservation

- To check if a dependency $\alpha \to \beta$ is preserved in a decomposition of R into $R_1, R_2, ..., R_n$ we apply the following test (with attribute closure done with respect to F)
 - result = α while (changes to result) do for each R_i in the decomposition $t = (result \cap R_i)^+ \cap R_i$ result = result $\cup t$
 - If result contains all attributes in β , then the functional dependency $\alpha \to \beta$ is preserved.
- We apply the test on all dependencies in F to check if a decomposition is dependency preserving
- This procedure (attribute closure) takes polynomial time, instead of the exponential time required to compute F^* and $(F_1 \cup F_2 \cup ... \cup F_n)^*$

S425 - Fall 2016 - Boris Glavic

8.41

@Silberschatz, Korth and Sudarshan

Example

- Decomposition $R_1 = (A, B), R_2 = (B, C)$
 - Lossless-join decomposition
 - Dependency preserving

CS425 - Fall 2016 - Boris Glavic

8.42

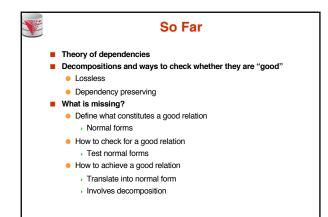
Silberschatz, Korth and Sudarshar

Normal Forms

modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use



Goals of Normalization

- Let R be a relation scheme with a set F of functional dependencies.
- Decide whether a relation scheme R is in "good" form.
- In the case that a relation scheme *R* is not in "good" form, decompose it into a set of relation scheme {*R*₁, *R*₂, ..., *R*_n} such that
 - each relation scheme is in good form
 - the decomposition is a lossless-join decomposition
 - Preferably, the decomposition should be dependency preserving.

8.45

©Silberschatz, Korth and Sudarsh

First Normal Form

- A domain is **atomic** if its elements are considered to be indivisible units
 - Examples of non-atomic domains:
 - > Set of names, composite attributes
 - Identification numbers like CS101 that can be broken up into parts
- A relational schema R is in first normal form if the domains of all attributes of R are atomic
- Non-atomic values complicate storage and encourage redundant (repeated) storage of data
 - Example: Set of accounts stored with each customer, and set of owners stored with each account
 - We assume all relations are in first normal form
 - (revisited in Chapter 22 of the textbook: Object Based Databases)

S425 - Fall 2016 - Boris Glavic

@Silberschatz, Korth and Sudarsh

First Normal Form (Cont'd)

- Atomicity is actually a property of how the elements of the domain are used.
 - Example: Strings would normally be considered indivisible
 - Suppose that students are given roll numbers which are strings of the form CS0012 or EE1127
 - If the first two characters are extracted to find the department, the domain of roll numbers is not atomic.
 - Doing so is a bad idea: leads to encoding of information in application program rather than in the database.

2425 Eall 2016 Basia Clauia

8.47

@Silberschatz, Korth and Sudarshan

Second Normal Form

- A relation schema R in 1NF is in second normal form (2NF) iff
 - No non-prime attribute depends on parts of a candidate key
 - An attribute is non-prime if it does not belong to any candidate key for R

CS425 - Fall 2016 - Boris Glavic

8.48

©Silberschatz, Korth and Sudarsh

Second Normal Form Example

- R(A,B,C,D)
 - A,B \rightarrow C,D
 - $\bullet \ A \to C$
 - B → D
- {A,B} is the only candidate key
- R is not in 2NF, because A->C where A is part of a candidate key and C is not part of a candidate key
- Interpretation R(A,B,C,D) is Advisor(InstrSSN, StudentCWID, InstrName, StudentName)
 - Indication that we are putting stuff together that does not belong together

.....

8.49

.....

Second Normal Form Interpretation

- Why is a dependency on parts of a candidate key bad?
 - That is why is a relation that is not in 2NF bad?
- 1) A dependency on part of a candidate key indicates potential for redudancy
 - Advisor(InstrSSN, StudentCWID, InstrName, StudentName)
 - StudentCWID → StudentName
 - If a student is advised by multiple instructors we record his name several times
- 2) A dependency on parts of a candidate key shows that some attributes are unrelated to other parts of a candidate key
 - That means the table should be split

0040F F-11 0040 B-----

©Silberschatz, Korth and S

2NF is What We Want?

- Instructor(Name, Salary, DepName, DepBudget) = I(A,B,C,D)
 - \bullet A \rightarrow B,C,D
 - $O \rightarrow D$
- {Name} is the only candidate key
- I is in 2NF
- However, as we have seen before I still has update redundancy that can cause update anomalies
 - We repeat the budget of a department if there is more than one instructor working for that department

S425 - Fall 2016 - Boris Glavic

8.51

Silberschatz, Korth and Sudar

Third Normal Form

■ A relation schema *R* is in **third normal form (3NF)** if for all:

 $\alpha \rightarrow \beta$ in F^+

at least one of the following holds:

- $\alpha \rightarrow \beta$ is trivial (i.e., $\beta \in \alpha$)
- ullet α is a superkey for R
- Each attribute A in $\beta \alpha$ is contained in a candidate key for R. (NOTE: each attribute may be in a different candidate key)

Alternatively,

 Every attribute depends directly on a candidate key, i.e., for every attribute A there is a dependency X → A, but no dependency Y → A where Y is not a candidate key

CS425 - Fall 2016 - Boris Glavi

@Silberschatz, Korth and Sudarsh

3NF Example

- Instructor(Name, Salary, DepName, DepBudget) = I(A,B,C,D)
 - A → B,C,D
- \bullet C \rightarrow D
- {Name} is the only candidate key
- Lis in 2NF
- I is not in 3NF

CASE Eall 2016 Basia Claud

8.53

©Silberschatz, Korth and Sudarshan

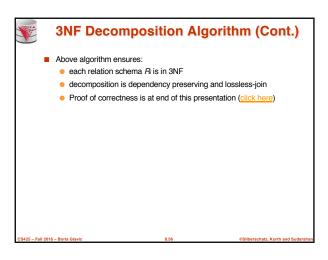
Testing for 3NF

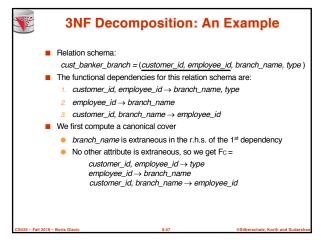
- Optimization: Need to check only FDs in F, need not check all FDs in F*.
- \blacksquare Use attribute closure to check for each dependency $\alpha \to \beta,$ if α is a superkey.
- If α is not a superkey, we have to verify if each attribute in β is contained in a candidate key of R
 - this test is rather more expensive, since it involve finding candidate keys
 - testing for 3NF has been shown to be NP-hard
 - Interestingly, decomposition into third normal form (described shortly) can be done in polynomial time

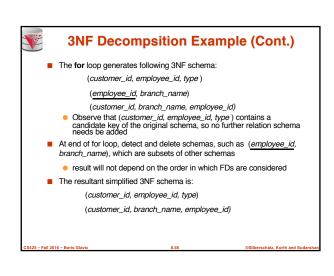
CS425 - Fall 2016 - Boris Glavic

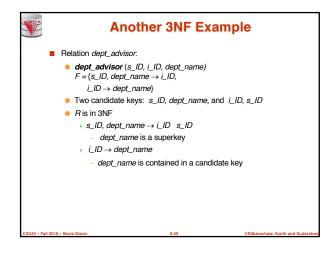
8.54

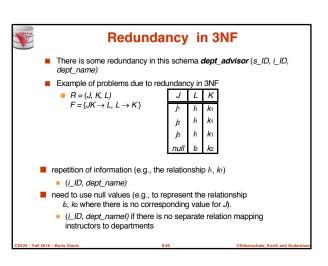
©Silberschatz, Korth and Sudarshar











Boyce-Codd Normal Form

A relation schema R is in BCNF with respect to a set F of functional dependencies if for all functional dependencies in $F^{\scriptscriptstyle +}$ of the form

where $\alpha \subseteq R$ and $\beta \subseteq R$, at least one of the following holds:

- $\alpha \to \beta$ is trivial (i.e., $\beta \subseteq \alpha$)
- \blacksquare α is a superkey for R

Example schema not in BCNF:

instr_dept (ID, name, salary, dept_name, building, budget)

because dept_name→ building, budget holds on instr_dept, but dept_name is not a superkey

BCNF and Dependency Preservation

- If a relation is in BCNF it is in 3NF
- Constraints, including functional dependencies, are costly to check in practice unless they pertain to only one relation
- Because it is not always possible to achieve both BCNF and dependency preservation, we usually consider normally third normal

Testing for BCNF

- To check if a non-trivial dependency $\alpha \rightarrow \beta$ causes a violation of BCNF
 - 1. compute α^+ (the attribute closure of α), and
 - 2. verify that it includes all attributes of *R*, that is, it is a superkey of *R*.
- **Simplified test**: To check if a relation schema R is in BCNF, it suffices to check only the dependencies in the given set F for violation of BCNF, rather than checking all dependencies in F.
 - If none of the dependencies in F causes a violation of BCNF, then none of the dependencies in F* will cause a violation of BCNF
- However, simplified test using only F is incorrect when testing a relation in a decomposition of R
 - Consider R = (A, B, C, D, E), with $F = \{A \rightarrow B, BC \rightarrow D\}$
 - ▶ Decompose R into $R_1 = (A,B)$ and $R_2 = (A,C,D,E)$
 - \rightarrow Neither of the dependencies in F contain only attributes from (A,C,D,E) so we might be mislead into thinking R_2 satisfies BCNF.
 - In fact, dependency AC → D in F⁺ shows R₂ is not in BCNF.

Testing Decomposition for BCNF

- To check if a relation R in a decomposition of R is in BCNF,
 - Either test Ri for BCNF with respect to the restriction of F to Ri (that is, all FDs in F+ that contain only attributes from Ri)
 - or use the original set of dependencies F that hold on R, but with the following test:
 - for every set of attributes $\alpha \subseteq R_i$, check that α^+ (the attribute closure of α) either includes no attribute of R_i α , or includes all attributes of Ri.
 - If the condition is violated by some $\alpha \rightarrow \beta$ in F, the

 $\alpha \rightarrow (\alpha^+ - \alpha) \cap Ri$

can be shown to hold on Ri, and Ri violates BCNF.

▶ We use above dependency to decompose Ri

Decomposing a Schema into BCNF

Suppose we have a schema R and a non-trivial dependency $\alpha{\to}\beta$ causes a violation of BCNF.

We decompose R into:

- (α U β)
- (R-(β-α)) In our example,
 - α = dept name

 β = building, budget and inst_dept is replaced by

- (α U β) = (dept_name, building, budget)

• (R - (β - α)) = (ID, name, salary, dept_name)

BCNF Decomposition Algorithm

 $result := \{R\};$ done := false compute F+ while (not done) do if (there is a schema Ri in result that is not in BCNF) then begin $\alpha \to \beta$ be a nontrivial functional dependency that holds on R_i such that $\alpha \to R_i$ is not in F^+ , and $\alpha \cap \beta = \emptyset$; result := $(result - R_i) \cup (R_i - \beta) \cup (\alpha, \beta)$; end else done := true;

Note: each Ri is in BCNF, and decomposition is lossless-join.

Example of BCNF Decomposition

- R = (A, B, C) $F = \{A \rightarrow B \}$ $B \rightarrow C$ $\mathsf{Key} = \{A\}$
- R is not in BCNF ($B \rightarrow C$ but B is not superkey)
- Decomposition
 - $R_1 = (B, C)$
 - R₂ = (A,B)

Example of BCNF Decomposition

- class (course_id, title, dept_name, credits, sec_id, semester, year, building, room_number, capacity, time_slot_id)
- Functional dependencies:
 - course_id→ title, dept_name, credits
 - building, room_number→capacity
 - course_id, sec_id, semester, year→building, room_number, time slot id
- A candidate key {course_id, sec_id, semester, year}.
- BCNF Decomposition:
 - course_id→ title, dept_name, credits holds
 - but course_id is not a superkey.
 - We replace class by:
 - course(course_id, title, dept_name, credits)
 - class-1 (course_id, sec_id, semester, year, building, room_number, capacity, time_slot_id)

BCNF Decomposition (Cont.)

- course is in BCNF
- How do we know this?
- building, room_number→capacity holds on class-1
 - but {building, room_number} is not a superkey for class-1.
 - We replace class-1 by:
 - classroom (building, room_number, capacity)
 - section (course_id, sec_id, semester, year, building, room_number, time_slot_id)
- classroom and section are in BCNF.

BCNF and Dependency Preservation

It is not always possible to get a BCNF decomposition that is dependency preserving

 \blacksquare R = (J, K, L) $F = \{JK \to L \\ L \to K\}$

Two candidate keys = JK and JL

- R is not in BCNF
- Any decomposition of R will fail to preserve

 $JK \rightarrow L$

This implies that testing for $JK \rightarrow L$ requires a join

How good is BCNF?

- There are database schemas in BCNF that do not seem to be sufficiently normalized
- Consider a relation

inst_info (ID, child_name, phone)

• where an instructor may have more than one phone and can have multiple children

ID	child_name	phone	
99999	David	512-555-1234	
99999	David	512-555-4321	
99999	William	512-555-1234	
99999	Willian	512-555-4321	

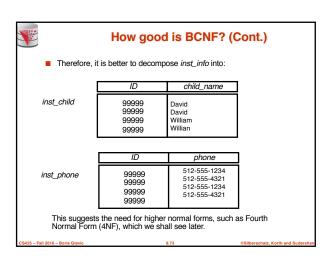
inst_info

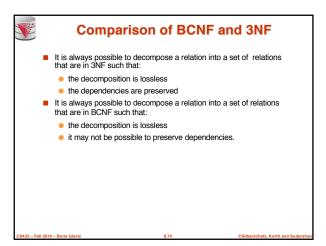
How good is BCNF? (Cont.)

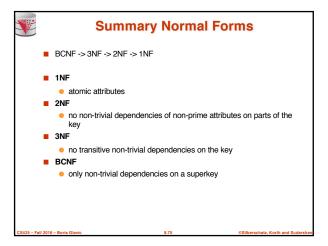
- There are no non-trivial functional dependencies and therefore the relation is in BCNF
- Insertion anomalies i.e., if we add a phone 981-992-3443 to 99999, we need to add two tuples

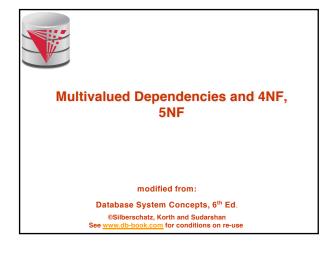
(99999, David, 981-992-3443)

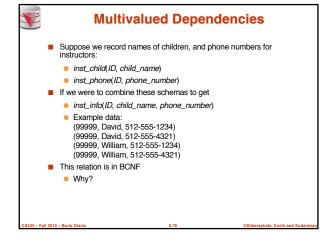
(99999, William, 981-992-3443)











Multivalued Dependencies (MVDs)

■ Let R be a relation schema and let $\alpha \subseteq R$ and $\beta \subseteq R$. The multivalued dependency

$$\alpha \longrightarrow \beta$$

holds on R if in any legal relation r(R), for all pairs for tuples t_1 and t_2 in r such that $t_1[\alpha] = t_2[\alpha]$, there exist tuples t_3 and t_4 in r such that:

$$\begin{array}{ll} \hbar[\alpha] = t \nu[\alpha] = \hbar [\alpha] = t a [\alpha] \\ \hbar[\beta] &= \hbar [\beta] \\ \hbar[R - \beta] = t \nu[R - \beta] \\ \hbar[\beta] &= t \nu[\beta] \\ \hbar[R - \beta] = \hbar[R - \beta] \end{array}$$

COASE Fall 2016 Basis Clause

8.7

ilbe Schatz, Korth and Sudare

MVD (Cont.)

■ Tabular representation of $\alpha \longrightarrow \beta$

	α	β	$R - \alpha - \beta$
t_1	$a_1 \dots a_i$	$a_{i+1} \dots a_j$	$a_{j+1} \dots a_n$
t_2	$a_1 \dots a_i$	$b_{i+1} \dots b_j$	$b_{j+1} \dots b_n$
t_3	$a_1 \dots a_i$	$a_{i+1} \dots a_j$	$b_{j+1} \dots b_n$
t_4	$a_1 \dots a_i$	$b_{i+1} \dots b_j$	$a_{j+1} \dots a_n$

- Eall 2016 - Barie Clavic 8 80 @Silharechatz Korth and Sudar

Example

■ Let R be a relation schema with a set of attributes that are partitioned into 3 nonempty subsets.

■ We say that $Y \longrightarrow Z(Y$ multidetermines Z) if and only if for all possible relations r(R)

 $< y_1, z_1, w_1 > \in r \text{ and } < y_1, z_2, w_2 > \in r$

then

 $< y_1, z_1, w_2 > \in r \text{ and } < y_1, z_2, w_1 > \in r$

■ Note that since the behavior of Z and W are identical it follows that

 $Y \longrightarrow Z \text{ if } Y \longrightarrow W$

CS425 - Fall 2016 - Boris Glavio

8.81

Silberschatz, Korth and Sudar

Example (Cont.)

In our example:

ID →→ child_name ID →→ phone_number

- The above formal definition is supposed to formalize the notion that given a particular value of Y (ID) it has associated with it a set of values of Z (child_name) and a set of values of W (phone_number), and these two sets are in some sense independent of each other.
- Note:
 - If $Y \rightarrow Z$ then $Y \longrightarrow Z$
 - Indeed we have (in above notation) Z₁ = Z₂
 The claim follows.

CS425 - Fall 2016 - Boris Glavi

©Silberschatz

Use of Multivalued Dependencies

- We use multivalued dependencies in two ways:
 - To test relations to **determine** whether they are legal under a given set of functional and multivalued dependencies
 - To specify constraints on the set of legal relations. We shall thus concern ourselves only with relations that satisfy a given set of functional and multivalued dependencies.
- If a relation r fails to satisfy a given multivalued dependency, we can construct a relations r' that does satisfy the multivalued dependency by adding tuples to r.

COASE Fall 2016 Basis Clause

8.83

©Silberschatz, Korth and Sudarshan

Theory of MVDs

- From the definition of multivalued dependency, we can derive the following rule:
 - If $\alpha \to \beta$, then $\alpha \to \beta$

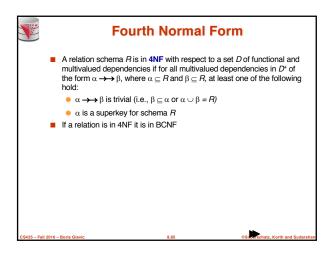
That is, every functional dependency is also a multivalued dependency

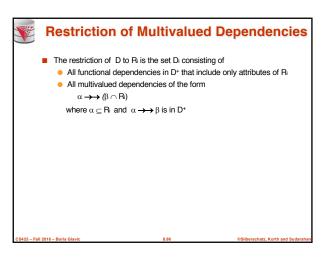
- The **closure** D+ of *D* is the set of all functional and multivalued dependencies logically implied by *D*.
 - We can compute D⁺ from D, using the formal definitions of functional dependencies and multivalued dependencies.
 - We can manage with such reasoning for very simple multivalued dependencies, which seem to be most common in practice
 - For complex dependencies, it is better to reason about sets of dependencies using a system of inference rules (see Appendix C).

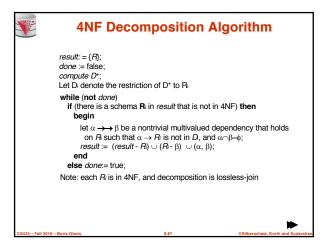
S425 - Fall 2016 - Boris Glavic

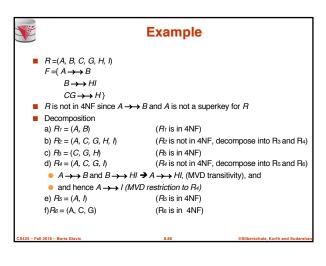
8.84

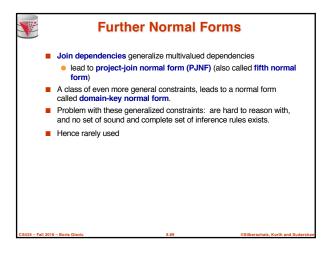
Santata Karth and Sudan

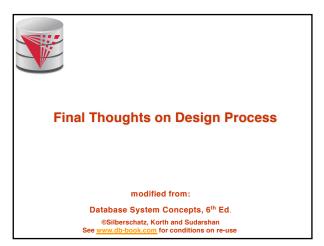












Overall Database Design Process

- We have assumed schema R is given
 - R could have been generated when converting an ER diagram to a set of tables.
 - R could have been a single relation containing all attributes that are
 of interest (called universal relation).
 - Normalization breaks R into smaller relations.
 - R could have been the result of some ad hoc design of relations, which we then test/convert to normal form.

8.91

ER Model and Normalization

- When an ER diagram is carefully designed, identifying all entities correctly, the tables generated from the ER diagram should not need further normalization.
- However, in a real (imperfect) design, there can be functional dependencies from non-key attributes of an entity to other attributes of the entity
 - Example: an employee entity with attributes department_name and building, and a functional dependency department_name building
 - Good design would have made department an entity
- Functional dependencies from non-key attributes of a relationship set possible, but rare --- most relationships are binary

CS425 - Fall 2016 - Boris Glavic

@Silberschatz, Korth and Sudarsh

Denormalization for Performance

- May want to use non-normalized schema for performance
- For example, displaying prereqs along with course_id, and title requires join of course with prereq
- Alternative 1: Use denormalized relation containing attributes of course as well as prereq with all above attributes
 - faster lookup
 - extra space and extra execution time for updates
 - extra coding work for programmer and possibility of error in extra code
- Alternative 2: use a materialized view defined as course prereq
 - Benefits and drawbacks same as above, except no extra coding work for programMer and avoids possible errors

S425 - Fall 2016 - Boris Glavic

8.93

@Silberschatz, Korth and Sudarshan

Other Design Issues

- Some aspects of database design are not caught by normalization
- Examples of bad database design, to be avoided:
 Instead of earnings (company_id, year, amount), use
 - earnings_2004, earnings_2005, earnings_2006, etc., all on the schema (company id, earnings).
 - Above are in BCNF, but make querying across years difficult and needs new table each year
 - company_year (company_id, earnings_2004, earnings_2005, earnings_2006)
 - Also in BCNF, but also makes querying across years difficult and requires new attribute each year.
 - Is an example of a crosstab, where values for one attribute become column names
 - Used in spreadsheets, and in data analysis tools

CS425 - Fall 2016 - Boris Glav

. . . .

©Silberschatz, Korth and Sudarsh

Recap

- Functional and Multi-valued Dependencies
 - Axioms
 - Closure
 - Minimal Cover
 - Attribute Closure
- Redundancy and lossless decomposition
- Normal-Forms
 - 1NF, 2NF, 3NF
 - BCNF
 - 4NF, 5NF

S425 - Fall 2016 - Boris Glavio

8.95

©Silberschatz, Korth and Sudarshan

End of Chapter

modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use

Proof of Correctness of 3NF Decomposition Algorithm

modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use

Correctness of 3NF Decomposition Algorithm

- 3NF decomposition algorithm is dependency preserving (since there is a relation for every FD in F_c)
- Decomposition is lossless
 - A candidate key (C) is in one of the relations R_i in decomposition
 - ullet Closure of candidate key under F_c must contain all attributes in
 - \bullet Follow the steps of attribute closure algorithm to show there is only one tuple in the join result for each tuple in $R_{\it l}$

CS425 - Fall 2016 - Boris Glavic

0.5

Correctness of 3NF Decomposition Algorithm (Cont' d.)

Claim: if a relation R_l is in the decomposition generated by the above algorithm, then R_l satisfies 3NF.

- Let R_i be generated from the dependency $\alpha \rightarrow \beta$
- \blacksquare Now, B can be in either β or α but not in both. Consider each case separately.

S425 - Fall 2016 - Boris Glavic

8.99

@Silberschatz, Korth and Sudarshan

Correctness of 3NF Decomposition (Cont' d.)

- Case 1: If B in β:
 - $\bullet\,$ If γ is a superkey, the 2nd condition of 3NF is satisfied
 - Otherwise α must contain some attribute not in γ
 - Since γ → B is in F* it must be derivable from Fc, by using attribute closure on γ.
 - Attribute closure not have used α →β. If it had been used, α must be contained in the attribute closure of γ, which is not possible, since we assumed γ is not a superkey.
 - Now, using $\alpha \to (\beta \{B\})$ and $\gamma \to B$, we can derive $\alpha \to B$ (since $\gamma \subseteq \alpha \beta$, and $B \notin \gamma$ since $\gamma \to B$ is non-trivial)
 - Then, B is extraneous in the right-hand side of $\alpha \to \beta$; which is not possible since $\alpha \to \beta$ is in Fc.
 - Thus, if B is in β then γ must be a superkey, and the second condition of 3NF must be satisfied.

CS425 - Fall 2016 - Boris Glav

©Silberschatz, Korth and Sudarsh

Correctness of 3NF Decomposition (Cont' d.)

- Case 2: B is in α .
 - \bullet Since α is a candidate key, the third alternative in the definition of 3NF is trivially satisfied.
 - In fact, we cannot show that γ is a superkey.
 - This shows exactly why the third alternative is present in the definition of 3NF.

Q.E.D.

CASE Fall 2018 Basia Clausi

8.101

@Silberschatz, Korth and Sudarshan

Figure 8.02

ID	name	salary	dept_name	building	budget
22222	Einstein	95000	Physics	Watson	70000
12121	Wu	90000	Finance	Painter	120000
32343	El Said	60000	History	Painter	50000
45565	Katz	75000	Comp. Sci.	Taylor	100000
98345	Kim	80000	Elec. Eng.	Taylor	85000
76766	Crick	72000	Biology	Watson	90000
10101	Srinivasan	65000	Comp. Sci.	Taylor	100000
58583	Califieri	62000	History	Painter	50000
83821	Brandt	92000	Comp. Sci.	Taylor	100000
15151	Mozart	40000	Music	Packard	80000
33456	Gold	87000	Physics	Watson	70000
76543	Singh	80000	Finance	Painter	120000

CS425 - Fall 2016 - Boris Glavic

3.102

@Silberschatz, Korth and Sudarsha

