
Name CWID

Final Exam

May 4th, 2022
8:00-10:00

CS520 - Data Integration,
Warehousing, and Provenance

Results

Please leave this empty!

1.1 1.2 1.3 Sum

Part 1.1 Provenance (Total: 30 Points)

For each of the queries shown in the following compute the provenance of all of their result tuples produced
over the database shown below. Calculate provenance for these provenance models:

• Minimal Why-Provenance

• Provenance Polynomials

List all query result tuples and show the provenance on the right for each query result tuple.

Consider the following database schema and instance:

city
name population state

Chicago 3200000 IL c1
Schaumburg 70000 IL c2

Evanston 120000 IL c3
Seattle 800000 WA c4
Austin 2000000 TX c5

connection
from to connectiontype price miles

Chicago Seattle flight 540 2000 n1
Chicago Austin flight 430 1500 n2
Chicago Austin bus 80 1500 n3
Chicago Schaumburg bus 5 2000 n4
Chicago Seattle train 250 2000 n5

Schaumburg Evanston bus 15 2000 n6
Austin Seattle flight 890 2000 n7

DB - Spring 2020: Page 2 (of 16)

Question 1.1.1 (9 Points)

πto(σprice<100∧from=Chicago(connection))

Solution
Minimal Why:

to
Austin {{n3}}

Schaumburg {{n4}}

Provenance Polynomials:

to
Austin n3

Schaumburg n4

DB - Spring 2020: Page 3 (of 16)

Question 1.1.2 (10 Points)

q1
def= πname(σstate=IL(city))

q
def= πfrom,to(q1 ▷◁name=from connection ▷◁to=name q1)

Solution
Minimal Why provenance:

from to
Chicago Schaumburg {{c1, n4, c2}}

Schaumburg Evanston {{c2, n6, c3}}

Provenance Polynomials:

from to
Chicago Schaumburg c1 · n4 · c2

Schaumburg Evanston c2 · n6 · c3

DB - Spring 2020: Page 4 (of 16)

Question 1.1.3 (11 Points)

q1
def= πfrom,to(σto=Seattle(connection))

q2
def= πfrom,to(σmiddle=Austin(ρmiddle←to(connection) ▷◁ ρmiddle←from(connection)))

q
def= q1 ∪ q2

Solution
Minimal Why provenance:

from to
Chicago Seattle {{n1}, {n5}, {n2, n7}, {n3, n7}}
Austin Seattle {{n7}}

Provenance Polynomials:

from to
Chicago Seattle n1 + n5 + n2 · n7 + n3 · n7
Austin Seattle n7

DB - Spring 2020: Page 5 (of 16)

Part 1.2 Data Warehousing (Total: 35 Points)

Recall that you should write all queries according to the schema and not according to the example instance.
Consider the following datawarehouse schema (star schema) and partial example instance. There is a single
fact table (sales) about sales of items. Each row in this fact table stores the quantity of a certain product
(e.g., 3 Samson Galaxy phones) sold at a particular location and time to a particular customer. There are four
dimension tables corresponding to the following dimensions:

• Time with three levels (year, month, day)

• Location with four levels (state, city, zip, street)

• Customer with one level (name).

• Product with three levels (category, brand, pname, price) where pname is the finest granularity and
brand and category are not comparable (some brands can have products from multiple categories and
categories obviously can contain have products from different brands). The same holds for price and
brand and price and category.

sales
TID LID CID PID numItems

1 4 1 1 15
2 1 5 2 10

100 1 76 4 22
.

timeDim
TID year month day

1 2010 1 1
2 2010 1 2

.

. . . 2018 5 1

customerDim
CID cname

1 Noekig
2 Prokig

.

locationDim
LID state city zip street

1 Illinois Chicago 60616 10 W 31st
2 Illinois Chicago 60615 900 Cottage Grove
3 Lousiana New Orleans 42345 12 Mark street

.

productDim
PID category brand pname price

1 computers Apple MacBook 1300
2 computers Dell Inspire 1000
3 smartphones Samsung Galaxy 1 600

.

Hints:

• Attributes with black background form the primary key of a relation (e.g., PID for relation productDim)

• Attributes LID, TID, PID, and CID in the fact table are foreign keys to the dimension tables

DB - Spring 2020: Page 6 (of 16)

Question 1.2.1 (8 Points)

Write an SQL query that returns for each year a breakdown of the total revenue for each level of the location
dimension. The revenue of a sale is the number of items (numItems) multiplied by product’s price (price).

Solution

SELECT sum (numItems ∗ p r i c e) AS revenue ,
year ,
s ta te ,
c i ty ,
z ip ,
s t r e e t ,
GROUPING (s t a t e) ,
GROUPING (c i t y) ,
GROUPING (z ip) ,
GROUPING (s t r e e t)

FROM s a l e s s , locat ionDim l , productDim p , timeDim t
WHERE s . LID = l . LID AND s . PID = p . PID AND s . TID = t . TID

GROUP BY year , ROLLUP (s ta te , c i ty , z ip , s t r e e t) ;

DB - Spring 2020: Page 7 (of 16)

Question 1.2.2 (9 Points)

Write an SQL query that returns the top-3 states with the highest average of the yearly total number of products
sold in this state.

Solution

SELECT avg (t o t a l i t e m s) AS avgyear ly , s t a t e
FROM (SELECT sum (numItems) AS t o ta l i t ems , s ta te , year

FROM s a l e s s , locat ionDim l , timeDim t
WHERE s . LID = l . LID AND s . PID = p . PID AND s . TID = t . TID
GROUP BY s ta te , year)

ORDER BY avgyear ly DESC
LIMIT 3 ;

DB - Spring 2020: Page 8 (of 16)

Question 1.2.3 (9 Points)

Write an SQL query that returns cities with at least 3 times the number of items sold in this city than the
average number of items sold in cities in the same state.

Solution

WITH c i t y i t e m s AS (
SELECT sum (numItems) as to ta l i t ems , c i ty , s t a t e

FROM s a l e s s , locat ionDim l
WHERE s . LID = l . LID
GROUP BY c i ty , s t a t e) ,

avgs ta te i t ems AS (
SELECT avg (t o t a l i t e m s) avgitems , s t a t e

FROM c i t y i t e m s
GROUP BY s t a t e)

SELECT c i ty , t o t a l i t e m s
FROM c i t y i t e m s c ,

avgs ta te i t ems a
WHERE c . s t a t e = a . s t a t e

AND t o t a l i t e m s >= 3 ∗ avgitems ;

DB - Spring 2020: Page 9 (of 16)

Question 1.2.4 (9 Points)

Write an SQL query that returns all cities. For each city report its rank in terms of the total revenue (number
of items (numItems) multiplied by the product price) produced by products sold in the city in 2022 compared
to all other cities in the same state in 2022. Order the results by the city’s revenue in decreasing order. For the
ordering the state should be ignored.

Solution

SELECT c i ty ,
rank () OVER (PARTITION BY s t a t e ORDER BY revenue DESC) AS rank ,
revenue

FROM (SELECT sum (numItems ∗ p r i c e) AS revenue , c i ty , s t a t e
FROM s a l e s s , locat ionDim l , timeDim t

WHERE s . TID = t . TID
AND s . LID = l . LID
AND t . year = 2022

GROUP BY c i ty , s t a t e) c i t y r e v s
ORDER BY revenue DESC ;

DB - Spring 2020: Page 10 (of 16)

Part 1.3 Virtual Data Integration (Total: 35 Points)

Consider the following global schema and LAV views defining the content of local sources.

• Artist(name,age)

• Song(title,length,writtenby)

• AlbumSong(songtitle,albumtitle,nr)

• Album(title,price,genre,recordedby)

v1(Name,Age,Genre) :- artist(Name,Age), album(AT,P,Genre,Name), Age < 50.

v2(AlbumTitle,Performer) :- album(AlbumTitle,P,G,Performer), G = jazz.

v3(AlbumTitle) :- album(AlbumTitle,P,G,Performer), P > 30.

v4(SongTitle,AlbumTitle,WrittenBy) :- albumsong(SongTitle,AlbumTitle,N),
song(SongTitle,L,WrittenBy),
artist(WrittenBy,A).

Question 1.3.1 (35 Points)

Rewrite the following query using the bucket algorithm with the views given above. First write down the content
of the buckets, then write down every candidate rewriting based on the buckets and demonstrate whether it is
a contained rewriting or not, and then write down the maximally contained UCQ rewriting for the query.

q(Writer,Performer,Age,Title) :- artist(Performer,Age),
album(T,P,G,Performer),
albumsong(Title,T,N),
song(Title,L,Writer).

Solution

DB - Spring 2020: Page 11 (of 16)

First we need to create a bucket for every goal and put in each bucket the views which have the goal’s relation
in their body and return the head variables of the query coming from this goal.

artist(Performer,Age) album(T,P,G,Performer) albumsong(Title,T,N) song(Title,L,Writer)
v1(Performer,Age,X1) v1(Performer,X2,X3) v4(Title,X6,X7) v4(Title,X8,Writer)

v2(X4,Performer)

There are three possible combinations of views to cover the goals according to the buckets.
Option 1:

We would have to add an additional equality predicate for the repeated variable T (album title). However, the
view we use to cover goal album(T,P,G,Performer), does not return the album title, so this is not possible.
Thus, option 1 can not be extended into a contained rewriting, no matter which additional equality constraints
we add.

q1(Writer,Performer,Age,Title) :- v1(Performer,Age,X1), v1(Performer,X2,X3),
v4(Title,X6,X7), v4(Title,X8,Writer).

Option 2:

Note that we have to add the equality predicate X4=X6 to simulate the repeated variable T. Optionally, we can
equate X7 with Writer, but that is not required for containment.

q2a(Writer,Performer,Age,Title) :- v1(Performer,Age,X1), v2(X4,Performer),
v4(Title,X6,X7), v4(Title,X8,Writer), X4=X6.

or equivalently

q2(Writer,Performer,Age,Title) :- v1(Performer,Age,X1), v2(X4,Performer),
v4(Title,X4,X7), v4(Title,X8,Writer).

To prove containment, we have to replace the views with their definition (renaming existentially quantified
variables) and then find a containment mapping from q to the expanded view.

q2(Writer,Performer,Age,Title) :- artist(Performer,Age), album(Y1,Y2,X1,Performer), Age < 50,
album(X4,Y3,Y4,Performer), Y4 = jazz,
albumsong(Title,X4,Y5),
song(Title,Y6,X7),
artist(X7,Y7),
albumsong(Title,X8,N),
song(Title,Y8,Writer),
artist(Writer,A).

Since there exists a containment mapping Ψ as shown below, q2 is a contained rewriting. And because this is
the only contained rewriting, it is also a maximally contained rewriting.

Ψ(Writer)→Writer Ψ(Performer)→ Performer Ψ(Age)→ Age

Ψ(Title)→ Title Ψ(T)→ X4 Ψ(P)→ Y 3
Ψ(G)→ Y 4 Ψ(N)→ Y 5 Ψ(L)→ Y 8

Applying this containment mapping to the goals of q we get:

Ψ(artist(Performer, Age)) = artist(Performer, Age)
Ψ(album(T, P, G, Performer)) = album(X4, Y 3, Y 4, P erformer)

Ψ(albumsong(Title, T, N)) = albumsong(Title, X4, Y 5)
Ψ(song(Title, L, Writer)) = song(Title, Y 8, Writer)

DB - Spring 2020: Page 12 (of 16)

DB - Spring 2020: Page 13 (of 16)

DB - Spring 2020: Page 14 (of 16)

DB - Spring 2020: Page 15 (of 16)

DB - Spring 2020: Page 16 (of 16)

