
Name CWID

Homework Assignment
1

February 16, 2016

CS520
Results

Please leave this empty!

1.1 1.2 1.3 1.4 1.5 1.6

1.7 1.8 1.9 1.10 1.11 1.12 1.13 Sum

Instructions
• Try to answer all the questions using what you have learned in class

• The assignment is not graded

• There is a theoretical and practical part

• When writing a query, write the query in a way that it would work over all possible database
instances and not just for the given example instance!

CS520 - Spring 2016: Page 2 (of 13)

Lab Part
• This part of the assignment helps you to practice the techniques we have introduced in class. For this
assignment we are focusing on:

– Loading a dataset into a database
– Getting used to writing Datalog queries using the DLV system

Hospital Dataset

• We have uploaded a hospital dataset to the course webpage: !http://cs.iit.edu/~cs520/hospital.csv

• The database instance is stored in a CSV file

• The schema of this database contains a single table with attributes

– providernumber
– hospitalname
– address1
– address2
– address3
– city
– state
– zip
– country
– phone
– hospitaltype
– hospitalowner
– emergencyservice
– condition
– measurecode
– measurename
– score
– sample
– stateavg

The following constraints (functional dependencies) have been defined for the dataset:

e0 : zip→ city

e1 : zip→ state

e2 : phone→ zip

e3 : phone→ city

e4 : phone→ state

e7 : providernumber,measurecode→ stateavg

e8 : state,measurecode→ stateavg

CS520 - Spring 2016: Page 3 (of 13)

!http://cs.iit.edu/~cs520/hospital.csv

Part 1.1 Create Schema and Load Dataset (Total: 0 Points)

• Load the database into your favorite database / NoSQL store / distributed file system. Use a system you
are comfortable with and where you would know how to write the queries required for the next questions
(have a look at these questions first).

• As an example here are the steps outlined for Postgres

– Run the DDL to create a (single table) schema for the dataset
– Use the loader utility of your database (e.g., COPY command in Postgres) to load the content of the

CSV file into your table

• In the next homework assignment we will perform various cleaning tasks using this dataset.

Part 1.2 Download DLV and get used to the system (Total: 0 Points)

• DLV is a logic programming system that supports Datalog (and more). Download DLV from http:
//www.dlvsystem.com/dlv/

• input to dlv is a .dlv file (text) which stores facts (the edb) and Datalog rules.

• DLV uses the following syntactical conventions:

– Facts are written as Q(c1, \ldots, cn). where each ci is a constant.
– Rules are written as Q(X) :- R1(X1), ... , Rn(Xn). where X’s can contain constants and vari-

ables.
– Variable names start with an uppercase character (e.g., X,Y,Name, . . .), constants with a lower case

character (x, y, chicago, . . .).
– If the value of a variable is not used by the query (the variable does not occur in the head and does

only occur once in the body), you may replace the variable with an underscore. For example, you
may write Q(X) : −R(X,_). instead of Q(X) : −R(X,Y).

• Running dlv:

– Open a terminal and run dlv test.dlv to run DLV over the input file test.dlv

– DLV will show all edb atoms defined in this file and all idb atoms that can be computed from these
edb atoms based on the rules in the file.

– To only show certain predicates use the -filter=predicate option on the commandline
∗ e.g., dlv -filter=Q test.dlv to show only the instance of predicate Q

Part 1.3 Create your first edb instance and run your first query (Total: 0 Points)

• Create a text file hop.dlv file

• Insert the following facts into the file:

hop (a , b) .
hop (b , c) .
hop (a , c) .
hop (c , d) .

Note that this is the example graph that was used in class.

• Run dlv to check that this step was done correctly: dlv hop.dlv

You should see output like this:

CS520 - Spring 2016: Page 4 (of 13)

http://www.dlvsystem.com/dlv/
http://www.dlvsystem.com/dlv/

dhcp8 :~ l o rd_pre t z e l : d lv hop . dlv

DLV [bu i ld BEN/Dec 17 2012 gcc 4 . 2 . 1 (Apple Inc . bu i ld 5666) (dot 3)]

{hop (a , b) , hop (a , c) , hop (b , c) , hop (c , d)}

• Now add a Datalog rule to the file: Q(X) : −hop(X,Y). This rule returns nodes that are the starting
points of edges.

hop (a , b) .
hop (b , c) .
hop (a , c) .
hop (c , d) .

Q(X) :− hop (X,Y) .

• Run dlv to check that this step was done correctly: dlv hop.dlv

dhcp8 :~ l o rd_pre t z e l : d lv hop . dlv
DLV [bu i ld BEN/Dec 17 2012 gcc 4 . 2 . 1 (Apple Inc . bu i ld 5666) (dot 3)]

{hop (a , b) , hop (a , c) , hop (b , c) , hop (c , d) , Q(a) , Q(b) , Q(c)}

Note that DLV now also lists the atoms of predicate Q that can be derived based on the edb instance. To only
show the query result (predicate Q) but not the edb instance use the filter predicate:

dhcp8 :~ l o rd_pre t z e l : d lv − f i l t e r=Q hop . dlv
DLV [bu i ld BEN/Dec 17 2012 gcc 4 . 2 . 1 (Apple Inc . bu i ld 5666) (dot 3)]

{Q(a) , Q(b) , Q(c)}

Part 1.4 Run some additional hop queries (Total: 0 Points)

Write the following queries over the hop relation.

• Return all nodes in the graph

• Return all pairs of nodes that can be reached from each other through paths of length 2 (also do paths of
length 3 and 4).

• Return all edges (x, y) for which a reversed edge (y, x) exists

• Return all edges (x, y) for which no reversed edge (y, x) exists

Part 1.5 Translate edb instance from the theory part (Total: 0 Points)

Create a file transportation.dlv and add the edb instance from the theory part.

Part 1.6 Run the queries from the theory part (Total: 0 Points)

Run the queries from the theory part using DLV and the transportation.dlv file you have created previously.

CS520 - Spring 2016: Page 5 (of 13)

Theory Part
• This part of the assignment helps you to practice the techniques we have introduced in class.

• In this assignment we focus on Datalog queries and modelling of constraints using the logical notation
introduced in class.

Consider the following transportation database schema and example instance:

road
fromCity toCity length
Chicago Evanston 13
Chicago Evanston 14
Chicago Oak Park 8
Oak Park Naperville 20
Chicago Naperville 18

city
name gasPrice population
Chicago 1.80 5,000,000
Evanston 1.90 300,000
Oak Park 1.50 500,000
Naperville 1.60 22,000

train
fromCity toCity price
Chicago Evanston 20
Chicago Oak Park 34
Oak Park Naperville 12

Hints:

• Attributes with black background form the primary key of a relation

• The attributes fromCity and toCity of relation road are both foreign keys to relation city

• The attributes fromCity and toCity or relation trans are both foreign keys to relation city

CS520 - Spring 2016: Page 6 (of 13)

Part 1.7 Datalog (Total: 0 Points)

Question 1.7.1 Population of Chicago (0 Points)

Write a Datalog program that returns the population of Chicago.

Solution

Q(X) : −city(chicago, Y,X).

Question 1.7.2 Long roads (0 Points)

Write a Datalog program that returns the direct roads between cities that are at least 10 miles long.

Solution

Q(X,Y) : −road(X,Y, Z), Z > 9.

Question 1.7.3 Connected cities (0 Points)

Write a Datalog program that returns pairs of cities that can be reached from each other with a direct road or
train connection.

Solution

CS520 - Spring 2016: Page 7 (of 13)

Q(X,Y) : −road(X,Y, Z).
Q(X,Y) : −train(X,Y, Z).

Question 1.7.4 Large connected cities (0 Points)

Write a Datalog program that returns pairs of cities that can be reached from each other with a direct road
where both cities have a population larger than 100,000 people.

Solution

LargeCity(X) : −city(X,_, Y), Y > 100, 000.
Q(X,Y) : −road(X,Y,_), LargeCity(X), LargeCity(Y).

Question 1.7.5 Train and roads (0 Points)

Write a Datalog program that computes which cities are directly reachable from each via train and road.

Solution

Q(X,Y) : −road(X,Y,_), train(X,Y,_).

CS520 - Spring 2016: Page 8 (of 13)

Question 1.7.6 Reachability of cities (0 Points)

Write a Datalog program that computes which cities are reachable from each other. To reach a city from another
city one has to either take a train connecting these cities or a road. Note that it may require multiple steps to
reach one city from another. Furthermore, for this question assume that roads and trains are running in both
directions even if the database only contains only one direction. For example, in the example instance there is
a train from Oak Park to Chicago.

Solution

oneHop(X,Y) : −road(X,Y, Z).
oneHop(X,Y) : −road(Y,X,Z).
oneHop(X,Y) : −train(X,Y, Z).
oneHop(X,Y) : −train(Y,X,Z).
reach(X,Y) : −oneHop(X,Y).
reach(X,Y) : −reach(X,Z), oneHop(Z, Y).

Question 1.7.7 Train lines (0 Points)

Write a Datalog program that computes which cities are reachable from each other via train with at most 2
transfers.

Solution

oneHop(X,Y) : −train(X,Y, Z).
oneHop(X,Y) : −train(Y,X,Z).
twoHops(X,Y) : −oneHop(X,Z), oneHop(Z, Y).

threeHops(X,Y) : −twoHop(X,Z), oneHop(Z, Y).
reach(X,Y) : −oneHop(X,Y).
reach(X,Y) : −twoHops(X,Y).
reach(X,Y) : −threeHops(X,Y).

CS520 - Spring 2016: Page 9 (of 13)

Question 1.7.8 Train lines (0 Points)

Translate the program from the previous question into relational algebra and SQL

Solution

WITH
oneHop AS (SELECT fromCity , toCity FROM t r a i n

UNION ALL
SELECT toCity AS fromCity , fromCity AS toCity FROM t r a i n) ,

twoHops AS (SELECT t . fromCity o . toCity
FROM oneHop t JOIN oneHop o
WHERE t . toCity=o . fromCity)

threeHops AS (SELECT t . fromCity o . toCity
FROM twoHop t JOIN oneHop o
WHERE t . toCity=o . fromCity)

SELECT DISTINCT fromCity , toCity
FROM

(SELECT ∗ FROM oneHops
UNION ALL
SELECT ∗ FROM twoHops
UNION ALL
SELECT ∗ FROM threeHops) hops

oneHop← train ∪ ρfromCity←toCity,toCity←fromCity(train)
twoHops← πfromCity,toCity(ρjoinCity←toCity(oneHop)><ρjoinCity←fromCity(oneHop))

threeHops← πfromCity,toCity(ρjoinCity←toCity(twoHop)><ρjoinCity←fromCity(oneHop))
q ← oneHop ∪ twoHops ∪ threeHops

CS520 - Spring 2016: Page 10 (of 13)

Part 1.8 Constraints (Total: 0 Points)

Question 1.8.1 Translation into logical formalism (0 Points)

Translate the functional dependencies e0 to e8 from the lab part into the first-order logical representation that
was introduced in class.

Solution

e0 : ∀zip, city1, city2 : hospital(zip, city1) ∧ hospital(zip, city2)→ city1 = city2
e1 : ∀zip, state1, state2 : hospital(zip, state1) ∧ hospital(zip, state2)→ state1 = state2
e2 : ∀phone, zip1, zip2 : hospital(phone, zip2) ∧ hospital(phone, zip2)→ zip1 = zip2
e3 : ∀phone, city1, city2 : hospital(phone, city2) ∧ hospital(phone, city2)→ city1 = city2
e4 : ∀phone, state1, state2 : hospital(phone, state2) ∧ hospital(phone, state2)→ state1 = state2
e6 : ∀pnum,mcode, avg1, avg2 : hospital(pnum,mcode, avg1) ∧ hospital(pnum,mcode, avg2)→ avg1 = avg2
e7 : ∀state,mcode, avg1, avg2 : hospital(state,mcode, avg1) ∧ hospital(state,mcode, avg2)→ avg1 = avg2

Question 1.8.2 Translation into logical formalism (0 Points)

Translate the primary and foreign key constraints of the transportation schema present before into the first-order
logical representation that was introduced in class.

Solution
Note that the primary key constrain on relation road trivially holds under set semantics (all attributes).

PK(city) : ∀name, gP1, gP2, ppl1, ppl2 : city(name, gP1, ppl1) ∧ city(name, gP2, ppl2)→ gP1 = gP2 ∧ ppl1 = ppl2
PK(train) : ∀fCity, tCity, p1, p2 : train(fCity, tCity, p1) ∧ train(fCity, tCity, p2)→ p1 = p2
FK1(road) : ∀fCity, t, l : road(fCity, t, l)→ ∃gPrice, ppl : city(fCity, gPrice, ppl)
FK2(road) : ∀f, tCity, l : road(f, tCity, l)→ ∃gPrice, ppl : city(tCity, gPrice, ppl)
FK1(train) : ∀fCity, t, l : train(fCity, t, l)→ ∃gPrice, ppl : city(fCity, gPrice, ppl)
FK2(train) : ∀f, tCity, l : train(f, tCity, l)→ ∃gPrice, ppl : city(tCity, gPrice, ppl)

CS520 - Spring 2016: Page 11 (of 13)

Question 1.8.3 Translation into denial constraints (0 Points)

Translate the functional dependencies e0 to e8 from the lab part into denial constraints.

Solution

e0 : ∀¬(hospital(zip, city1) ∧ hospital(zip, city2) ∧ city1 6= city2)
e1 : ∀¬(hospital(zip, state1) ∧ hospital(zip, state2) ∧ state1 6= state2)
e2 : ∀¬(hospital(phone, zip2) ∧ hospital(phone, zip2) ∧ zip1 6= zip2)
e3 : ∀¬(hospital(phone, city2) ∧ hospital(phone, city2) ∧ city1 6= city2)
e4 : ∀¬(hospital(phone, state2) ∧ hospital(phone, state2) ∧ state1 6= state2)
e6 : ∀¬(hospital(pnum,mcode, avg1) ∧ hospital(pnum,mcode, avg2) ∧ avg1 6= avg2)
e7 : ∀¬(hospital(state,mcode, avg1) ∧ hospital(state,mcode, avg2) ∧ avg1 6= avg2)

Question 1.8.4 Creating denial constraints (0 Points)

Create denial constraints over the transportation schema that encode the following restrictions (note: it may
be necessary to use more than one constraint to express some of the restrictions):

1. The gas price of cities with over 200,000 inhabitats (population attribute) is always above or equals to 1.5

2. The difference in length between two roads connecting the same cities is never more than 10 miles

3. The direct train route between two cities is always more expensive than each individual train on a route
with one intermediate stop. E.g., the train (Chicago,Naperville) has to be more expensive than the
trains (Chicago,OakPark) and (OakPark,Naperville)

Solution

CS520 - Spring 2016: Page 12 (of 13)

Restriction 1

∀¬(city(city, inhabitats, gasprice) ∧ inhabitats > 200, 000 ∧ gasprice < 1.5)

Restriction 2

∀¬(road(cityA, cityB, length1) ∧ road(cityA, cityB, length2) ∧ abs(length1− length2) > 10)

Restriction 3

∀¬(train(x, y, z) ∧ train(x′, y′, z′) ∧ train(x′′, y′′, z′′) ∧ x = x′ ∧ y′ = x′′ ∧ y = y′′ ∧ z < z′)
∀¬(train(x, y, z) ∧ train(x′, y′, z′) ∧ train(x′′, y′′, z′′) ∧ x = x′ ∧ y′ = x′′ ∧ y = y′′ ∧ z < z′′)

CS520 - Spring 2016: Page 13 (of 13)

	Create Schema and Load Dataset (Total: 0 Points)
	Download DLV and get used to the system (Total: 0 Points)
	Create your first edb instance and run your first query (Total: 0 Points)
	Run some additional hop queries (Total: 0 Points)
	Translate edb instance from the theory part (Total: 0 Points)
	Run the queries from the theory part (Total: 0 Points)
	Datalog (Total: 0 Points)
	Population of Chicago (0 Points)
	Long roads (0 Points)
	Connected cities (0 Points)
	Large connected cities (0 Points)
	Train and roads (0 Points)
	Reachability of cities (0 Points)
	Train lines (0 Points)
	Train lines (0 Points)

	Constraints (Total: 0 Points)
	Translation into logical formalism (0 Points)
	Translation into logical formalism (0 Points)
	Translation into denial constraints (0 Points)
	Creating denial constraints (0 Points)

