\square

Midterm Exam

March 7th, 2022 10:00-11:15

CS520 - Data Integration, Warehousing, and Provenance Results

Instructions

- Try to answer all the questions using what you have learned in class. Keep hard questions until the end.
- When writing a query, write the query in a way that it would work over all possible database instances and not just for the given example instance!
- The exam is closed book and closed notes! No calculator, smartphones, or similar allowed!

Consider the following database schema and example instance about students, their interests, organizations, and events organized by organizations:
student

sid	firstname	lastname	major	gpa
1	alice	smith	cs	3.5
2	alice	muller	psych	4.0
3	bob	smith	cs	2.5
4	malice	peters	phys	3.5

interest
student activity

1	surfing
1	hacking
2	chess
2	tennis
3	surfing
3	hacking

organization

name	nummembers
acm	40
iit tennis club	30
the hacking surfers	3

event

name	organization	activity	date
chihack	acm	hacking	$2022-03-02$
potluck	acm	food	$2022-01-11$
iit annual surfing context	the hacking surfers	surfing	$2012-03-15$
surfhackaton	the hacking surfers	hacking	$2022-04-05$

Hints:

- Attributes with black background form the primary key of a relation (e.g., sid for relation student)
- The attributes student of relation interest are a foreign key to relation student.
- The attributes organization of relation event are a foreign key to relation organization.

Part 1.1 Datalog (Total: 38 Points)

Recall that Datalog applies set semantics.

Question 1.1.1 (5 Points)

Write a Datalog program that returns the lastname and gpa of students that study cs.

Solution

```
q(L,G) :- student(_,_,L,cs,G).
```


Question 1.1.2 (6 Points)

Write a Datalog program that returns the firstname and lastname of students which are interested in surfing or hacking.

Solution

```
q(F,L) :- student(S,F,L,_,_), interest(S,surfing).
q(F,L) :- student(S,F,L,_,_), interest(S,hacking).
```


Question 1.1.3 (9 Points)

Write a Datalog program that returns the sid of students which are only interested in hacking, i.e., they have hacking as an interest, but do not have any other interests.

Solution

```
hackers(S) :- interest(S,hacking).
otherinterests(S) :- interest(S,I), I != hacking.
q(S) :- hackers(S), not otherinterests(S).
```


Question 1.1.4 (9 Points)

Write a Datalog program that returns pairs of students (sid and lastname) that may be interested in the same organization (name). A student is considered to be interested in an organization, if the organization hosts at least one event with an activity that matches one of the students interest. For instance, organization acm has hacking events which both Alice Smith and Malice Peters would be interested in

Solution

```
studentorg(S,L,O) :- student(S,_,L,_,_), interest(S,A), event(_,0,A,_).
q(S1,L1,S2,L2) :- studentorg(S1,L1,0), studentorg(S2,L2,0).
```


Question 1.1.5 (9 Points)

Write a Datalog program that returns pairs of students (their sids) which have exactly the same interests. For example, in the given example database instance, alice smith and malice peters have the same interests (hacking and surfing).

Solution

```
sids(S) :- student(S,_,_,_,_).
differentinterest(S1,S2) :- interest(S1,I), sids(S2), not interest(S2,I).
differentinterest(S1,S2) :- interest(S2,I), sids(S1), not interest(S1,I).
studentpairs(S1,S2) :- sids(S1), sids(S2).
q(S1,S2) :- studentpairs(S1,S2), not differentinterest(S1,S2).
```


Part 1.2 Constraints (Total: 26 Points)

Question 1.2.1 Expressing Constraints in First-Order Logic (13 Points)

Recall the representation of constraints as universally quantified first-order logic implications as introduced in class. Write down the logical encoding of the following constraints over the example schema:

- The foreign key from attribute student of relation interest to relation student.
- No organization can have more than 50 members.
- All food events (with activity equal to food) of organizations with more than 10 members have to take place after 2022-05-01.
- The following functional dependency for relation event: organization, date \rightarrow activity

Solution

$$
\begin{aligned}
& \qquad K_{1}: \forall s, a: \operatorname{interest}(s, i) \rightarrow \exists x_{1}, x_{2}, x_{3}, x_{4}: \operatorname{student}\left(s, x_{1}, x_{2}, x_{3}, x_{4}\right) \\
& L E S S 50: \forall o, m: \operatorname{organization}(o, m) \rightarrow m \leq 50 \\
& F O O D L A T E: \forall n, o, a, d, m: \operatorname{event}(n, o, a, d) \wedge n=f o o d \wedge \operatorname{organization}(o, m) \wedge m>10 \rightarrow d>2022-05-01 \\
& F D: \forall n_{1}, o, a_{1}, d, n_{2}, a_{2}: \operatorname{event}\left(n_{1}, o, a_{1}, d\right) \wedge \operatorname{event}\left(n_{2}, o, a_{2}, d\right) \rightarrow a_{1}=a_{2}
\end{aligned}
$$

Question 1.2.2 Creating Denial Constraints (13 Points)

Create denial constraints over the example schema based on the following descriptions.

- No organization can have more then 50 members.
- The organization ACM can only organize events with hacking or food activities
- No student can have more than 2 interests.

Solution

```
d
d : \foralln,o,a,d:\neg(event (n,o,a,d)\wedgeo=acm \wedgea\not= hacking \wedgea\not= food)
```


Part 1.3 Query Containment And Equivalence (Total: 36 Points)

Question 1.3.1 (36 Points)

Consider the queries shown below. Check all possible containment relationships. If there exists a containment mapping from Q_{i} to Q_{j} then write down the mapping.

```
Q1(Z,A) :- R(X,Z), S(Z,A), R(Z,Y).
Q (Y,Y) :- S(Y,Y), R(Z,A), R(Y,B), R(A,Y).
Q3(X,Y) :- S(X,Y), R(A,X), R(X,Z).
Q4(A,B) :- R(A,C), R(C,A), S(A,B).
```


Solution

$$
\underline{Q_{1} \rightarrow Q_{2}}:
$$

$$
\underline{Q_{1} \rightarrow Q_{3}}:
$$

$$
\underline{Q_{1} \rightarrow Q_{4}}:
$$

$$
Y \rightarrow B
$$

$$
Y \rightarrow Z
$$

$$
Y \rightarrow C
$$

$$
X \rightarrow A
$$

$$
X \rightarrow A
$$

$$
X \rightarrow C
$$

$$
Z \rightarrow Y
$$

$$
Z \rightarrow X
$$

$$
Z \rightarrow A
$$

$$
A \rightarrow Y
$$

$$
A \rightarrow Y
$$

$$
A \rightarrow B
$$

$Q_{2} \rightarrow Q_{1}:$

no containment mapping exists

$$
\underline{Q_{3} \rightarrow Q_{1}}:
$$

$\underline{Q_{3} \rightarrow Q_{2}}:$

$$
\underline{Q_{3} \rightarrow Q_{4}}:
$$

$Y \rightarrow A$
$Y \rightarrow Y$
$Y \rightarrow B$
$X \rightarrow Z$
$X \rightarrow Y$
$X \rightarrow A$
$Z \rightarrow Y$
$Z \rightarrow B$
$Z \rightarrow C$
$A \rightarrow A$
$A \rightarrow C$
$Q_{4} \rightarrow Q_{1}:$
no containment mapping exists
$Q_{4} \rightarrow Q_{2}:$
no containment mapping exists
$Q_{4} \rightarrow Q_{3}:$
no containment mapping exists

