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* Topics covered in this part
— Heterogeneity and Autonomy
— Data Integration Tasks
— Data Integration Architectures (Methods)
— Some Formal Background (sorry!)
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1.1 System Heterogeneity

* Hardware/Software
— Different hardware capabilities of sources
— Different protocols, binary file formats, ...
— Different access control mechanism

* Interface Heterogeneity

— Different interfaces for accessing data from a

source
* HTML forms
* XML-Webservices
~—

* Declarative language
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0) Course Info

1) Introduction

2) Data Preparation and Cleaning
3) Schema matching and mapping
4) Virtual Data Integration

5) Data Exchange

6) Data Warehousing

7) Big Data Analytics

8) Data Provenance
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1.1 System Heterogeneity
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e Hardware/Software

— Different hardware capabilities of sources
* Mobile phone vs. server: Cannot evaluate cross-
product of two 1GB relations on a mobile phone

— Different protocols, binary file formats, ...

* Order information stored in text files: line ending
differs between Mac/Window/Linux, character encoding

— Different access control mechanism

» FTP-access to files: public, ssh authentication, ..
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1.1 System Heterogeneity
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* Interface Heterogeneity
— Different interfaces for accessing data from a

source
* HTML forms
« Services (SOA)
¢ Declarative language
* Files
* Proprietary network protocol

()}

1.1 System Heterogeneity
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* Interface Heterogeneity — Examples
— Google search (+/-, site:, intitle:, filetype:

& Frotox Hatory _Bookmaris Tools_Window _til i

ece g
|(€)amo
-

Google  +auentcaton daiabases orac sesmmcracicam =

8
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* Interface Heterogeneity — Examples
- -sQL
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1.1 System Heterogeneity

* Interface Heterogeneity — Expressiveness
— Keyword-search vs. query language
— Predicates: equality (=), inequality (<, !=)
— Logical connectives: conjunctive (AND),
disjunctive (OR), negation
— Complex operations: aggregation, quantification

— Limitations: restriction to particular tables,
predicates, fixed queries with parameters, ...

1.1 System Heterogeneity
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* Interface Heterogeneity — Examples
- -sQL

1.1 System Heterogeneity
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* Interface Heterogeneity — Examples
— Web-form (with DB backend?)

amazon

EE  cvord g
search

Fixed - -

choices -

“Bound
parameter”

1/31/22



1.1 System Heterogeneity
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* Interface Heterogeneity — Examples
— Email-client

Disjunctive or
conjunctive

Comparison
operator

1.1 System Heterogeneity
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» Example: more expressive global language
— SQL with one table
* books (title, author, year, isbn, genre)
— Web form for books about history shown below

— What problems do may arise translating user
queries?

“"“Steven King
e

158N(s)

14
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1.1 System Heterogeneity
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* Query requires multiple requests
SELECT title

FROM books
WHERE author LIKE ‘%King%;

Stephen Kine, 1990, ...

At .
Steven King g ng Author
™ Larry King

How do we
know what
authors exist?

158N(s)

16
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1.1 System Heterogeneity

1.1 System Heterogeneity
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* Problems with interface heterogeneity
— Global query language is more powerful
* User queries may not be executable
* Integration system has to evaluate part of the query

— Bound parameters are incompatible with query
* User query may not be executable

ILLINOIS INSTITUTE
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* Integration system has to process part of the

query
SELECT title
FROM books t
WHERE author = ‘Steven King’
AND year = 2012;
‘ Stephen Kine, 1990, ...

15

1.1 System Heterogeneity

“"Steven King
e

158G
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* Query cannot be answered
SELECT title

FROM books
WHERE genre = ‘SciFi’;

Web form is
for history

book only!

17
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1.1 Structural Heterogeneity ILLINGIS INSTITUTE
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» Taxonomy of Heterogeneity * Data model
— Different semantic/expressiveness
— Different structure

* Schema
— Integrity constraints, keys E_;

— Schema elements:

Heterogeneity

Semantic
* use attribute or separate relations)

— Structure:
Datamodel Vaf‘[”e * e.g., normalized vs. denormalized relational schema
conflicts

Software Interface

=

1.1 Structural Heterogeneity o wstirureN 1.1 Structural Heterogeneity wumors msrrute\”
* Data model » Example: data model
— Relational model — Relational model
— XML model — XML model
— Object-oriented model —JSON
— Ontological model -00
—JSON

- ¢ Person and their addresses

1.1 Structural Heterogeneity ILLINOIS INSTITUTE 1.1 Structural Heterogeneity ILLINGIS INSTITUTE
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* Schema
— Modeling choices
+ Relaton v atrut
* Attrﬂ:)Ute V8. Value Male (Id, firstname, lastname)
Female (id, firstname, lastname)

* Relation vs. value Relation vs. Attribute
_Namlng Relation vs. Value Person(Id, firstname, lastname, male, female)

— Normalized vs. denormalized (relational concept)

— Nesting vs. reference

22
22
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1.1 Structural Heterogeneity
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1.1 Structural Heterogeneity
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¢ Relation-relation conflicts

— Naming conflicts
* Relations with different name representing the same
data (synonym)
* Relations with same name representing different
information (homonym)
— Structural conflicts
* Missing attributes
* Many-to-one
* Missing, but derivable attributes
— Integrity constraint conflicts

24
24

1.1 Structural Heterogeneity
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Example: Conflicts between relations

Person(Id, firstname, lastname, male, female)

Person(Id, name, gender, birthday)

25
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1.1 Structural Heterogeneity
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Mutliple attribtue
vs one attribute

Example: Conflic.  etween relations

Person(Id, firsthame, lastname, male, female)

Person (Id, n nder, birthday)

Derivable

Missing derivable attribute:
attribute: Compute age
Role from birthday

1.1 Structural Heterogeneity

INSTITUTE
OF TECHNOLOGY

LastName Age
CHECK(Age > 18)

30

stName
VARCHAR(40)

333-333-3333 Peter Schmeter

333-333-9999 Hans Glanz NULL

SSN FirstName SurName
VARCHAR(25)

3333333333 Peter Schmeter
3333339999 Hans Glanz

* Attribute-attribute conflicts

— Naming conflicts
* Attributes with different name representing the same
data (synonym)
* Attributes with same name representing different
information (homonym)
— Default value conflict

— Integrity constraint conflicts
* Datatype
* Constraints restricting values

1.1 Structural Heterogeneity
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Example: Conflicts between attributes and attributes

FirstName LastName

Age
CHECK(Age > 18)

VARCHAR(40)
3333333333 Peter Schmeter 30

3333339999 Hans Glanz NULL

SN FirstName SurNije Age Conflicting

VARCHAR(25) constraint
3333333333 Peter Schmeter -
3348339999 Hans Glanz -
Conflicting default
value

synonym

Conflicting
datatype

Conflicting format

29
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1.1 Structural Heterogeneity

OF TECHNOLOGY

* Normalized vs. denormalized

— E.g., relational model: Association between entities
can be represented using multiple relations and
foreign keys or one relation

Person Person

NAME —  Name
Address City

ILLINOIS INSTITUTE
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1.1 Structural Heterogeneity

* Problems caused by schema heterogeneity
— Unified access to multiple schemas or integrate
schemas into new schema

* Schema level: schema mapping, model management
operators, schema languages

 Data Level: virtual data integration, data exchange,
warehousing (ETL)

1.1 Semantic Heterogeneity
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* Semantic Heterogeneity
— Naming Conflicts
— Identity Conflicts (Entity resolution)
— Value Conflicts (Data Fusion)

1.1 Structural Heterogeneity

OF TECHNOLOGY

* Nested vs. flat

— Association between entities can be represented
using nesting or references (previous slides)

Person Person
Name

{Address city

ey Name

1.1 Heterogeneity +Autonomy

ILLINOIS INSTITUTE
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* Taxonomy of Heterogeneity

Heterogeneity

ket *

Datamodel Value
conflicts

Software Interface

5 X
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1.1 Semantic Heterogeneity

ILLINOIS INSTITUTE

OF TECHNOLOGY

* Naming Conflicts

— Ontological (concepts)
* Birds vs. Animals

— Synonyms
* Surname vs. last name

— Homonyms

— Units
* Gallon vs. liter

— Values
* Manager vs. Boss




1.1 Semantic Heterogeneity

* Ontological concepts
— Relationships between concepts
* A=B - Equivalence
* AEB - Inclusion
* AN B - Overlap
* A #B - Disjunction

36

1.1 Semantic Heterogeneity
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* Naming concepts (synonyms)

* Different words with same meaning

fereah(ianipse)

1.1 Semantic Heterogeneity

ILLINOIS INSTITUTE
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* Naming concepts (units)

ILLINOIS INSTITUTE
OF TECHNOLOGY

36 - ;

OF TECHNOLOGY

1.1 Semantic Heterogeneity

ILLINOIS INSTITUTE

* Ontological concepts

— Relationships between concepts
* A=B - Equivalence
* AEB - Inclusion
* AN B - Overlap

* A #B - Disjunction

Equivalence: Human vs Homo sapiens

5 s cachch Laes

S

1.1 Semantic Heterogeneity

ILLINOIS INSTITUTE
OF TECHNOLOGY

* Naming concepts (homonyms)
* Same words with different meaning

41

1.1 Semantic Heterogeneity
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* Identity Conflicts
— What is an object?
* E.g., multiple tuples in relational model

— Central question:

* Does object A represent the same entity as B
— This problem has been called

* Entity resolution

* Record linkage

* Deduplication

OF TECHNOLOGY

1/31/22



1.1 Semantic Heterogeneity ILLINGIS INSTITUTE
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* Identity Conflicts

(IBM, 300000000, USA)

(International Business Machines Corporation,50000)

1.1 Autonomy ILLINOIS INSTITUTE

OF TECHNOLOGY

* How autonomous are data sources

— One company
« Can enforce, e.g., schema and software

— The web
* Website decides
— Interface
— Determines access restrictions and limits
— Availability
— Format
— Query restrictions

1.3 Data integra‘[ion architectul‘es ILLINOIS INSTITUTE

OF TECHNOLOGY

* Virtual data integration
* Data Exchange
* Peer-to-peer data integration

* Datawarehousing

* Big Data analytics

1/31/22

1.1 Semantic Heterogeneity ILLINGIS INSTITUTE
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* Value Conflicts

— Objects representing the same entities have
conflicting values for semantically equivalent
attributes

» We have to identified that these objects are represent the
same entitity first!

— Resolving such conflicts requires Data Fusion

* Pick value from conflicting values
* Numerical methods: e.g., average
* Preferred value

1.2 Data integration taSkS ILLINOIS INSTITUTE

OF TECHNOLOGY

* Cleaning and prepreparation
* Entity resolution

* Data Fusion

* Schema matching

* Schema mapping

* Query rewrite

* Data translation

14 Fornlal Background ILLINOIS INSTITUTE
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OF TECHNOLOGY

* Query Equivalence
— Complexity for different query classes
* Query Containment
— Complexity for different query classes
* Datalog
— Recursion + Negation
* Integrity Constraints
— Logical encoding of integrity constraints
» Similarity Measures/Metrics
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1.4 Boolean Logic

* Boolean Logic (syntax)
— Atomic formulas:
* Boolean constants (true, false)
* Boolean Variables (can take Boolean constants as
values)
— Formulas:
* Any atomic formula is also a formula

o If ¢)a
formulas:

¢ N
¢V o=

are formulas then the following are also valid

&—E
48
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Formula:

1.4 Boolean Logic

(xVy) A-z
A possible valuation:

viz=T,y=1L,2=T

Evaluating the formula:

50

1.4 FO Syntax
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— Terms
* Variables: any variable from /X is a term
« Constants: any constant from][) is a term
— Atomic formulas:
+ For any n-ary predicate R and terms &1 geooy tn

R(tl, ey tn) is an atomic formula
— Formulas;
o If ¢ w are formulas then the following are also valid
formulas:
YA YV ¢
P — Jx Vo i -
(52 N
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1.4 Boolean Logic

* Boolean Logic (semantics)

— Valuation:
* Assign truth values to the variables of a formula

* Under a valuation a formula evaluates to a Boolean
value (true or false)

« If there exists a valuation that makes the formulaw true
then the formula ¥ is called satisfiable

— Semantics: TAL=1
* Expected semantics of TAT=T
Boolean operators: IvT=T

«

1.4 First-order logic (FO)

ILLINOIS INSTITUTE
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— Concepts
+ Domain of discourse ]))
— These are the values that we can bind variables to

— Values from the domain can also be used as constants in
formulas

* Asset of predicate symbols (each with an arity)

Ri,....R,

— These represent relations (in the mathematical sense)

« An infinite set of variables X’

1.4 Free / Bound Variables

ILLINOIS INSTITUTE
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— Free variables of a formula
* All variables not bound by quantifiers

(
free(v A @) = free(v) U free(d)
free(v V ¢) = free(y) U free(d)
free(Va : ) = free(y) — {z}
free(Fz : ) = free(y) — {x}
free(R(t1, ... t,)) = free(ti) U...U free(t,)
free(z) = {z}
free(c) =10

s R 5

53
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l -4 FO Senlantics ILLINOIS INSTITUTE l -4 FO Selllalltlcs ILLINOIS INSTITUTE
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— Model M — Given a model M and valuation \4

* an interpretation of the predicates, i.e., we assign each * The “result” of a formula [[1/) ﬂ M,

predicate to a concrete relation lelay = c

* We select a domain of discourse [[) [2]rmp = p()
— Valuations / for a formula?’ [R(s s t)ae = {T if (s [tnlm) € R

* Assigns free variables of 1/} to values from ] - othenwise

[v A o]]Mw = [Im u [é]m "

— Substitutions [V Iy = [¥lap V [Blap
* Replace all free occurrences of variable x with ¢ [ ¥lmp =~ [¥]mp
blz « ¢ B =V - kel

Ve : Y = /\ s [Ylz <
ceD

«

«

1.4 FO Selllalltics ILLINOIS INSTITUTE 1.4 FO Pl‘OblemS ILLINOIS INSTITUTE

OF TECHNOLOGY OF TECHNOLOGY

e ~ Model checking

e Givena model/\/l and formula'l/)without free

Formula: 1/) — Vy . R(:E, y) variables
Model: AAf ={R= {(1a1)7(172)7(1a3)} I [[w]] true?
o Is M,y true?
D=1{1,2,3}}

valuation: f(2) = 1 — Satisfiability
Result: ¥y : Rz, y)]mu * Given a formula w dogs there exist a model M and

=R D ARG, 2) a0 A TR 3) v, valuation {4 such that ﬁsw M, is true?

=@ Dlrpu € RA[@2)mpu € RAL:3)mpu € R ”

56 . 57 —

1.4 Integrity constraints ILLINOIS INSTITUTE 1.4 Integrity constraints ILLINOIS INSTITUTE
OF TECHNOLOGY OF TECHNOLOGY
* You know some types of integrity * Other types are
constraints already — Conditional functional dependencies
— Functional dependencies * E.g., used in cleaning
* Keys are a special case — Equality-generating dependencies
— Foreign keys — Multi-valued dependencies
* We have not really formalized that — Tuple-generating dependencies

— Join dependencies
— Denial constraints

58 59 %

58 59

10



1.4 Integrity constraints ILLINGIS INSTITUTE
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» How to manage all these different types of
constraints?

— Has been shown that these constraints can be
expressed in a logical formalism.

— Formulas which consist of relational and
comparison atoms. Variables represent values
¢ R(X9y’z)
e x=y

@ & 2

60

14 Integrity Constraints ILLINOIS INSTITUTE
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* Types of constraints we will use a lot
— Tuple-generating dependencies (tgds)
* Implication with conjunction of relational atoms
* Foreign keys and schema mappings (later)

VE : ¢(F) — I ()

— Equality-generating dependencies (egds)

* Generalizes keys, FDs

VT (%) — Ng=1Ti,, = Ly,

«

14 Datalog - IlltuitiOn ILLINOIS INSTITUTE
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* A Datalog rule
Q@) : —Ri(31), .., Ru(a).

* Procedural Interpretation: For all bindings
of variables that makes the RHS true
(conjunction) return bindings of T

Q (Name) : - Person (Name, Age) .
Return names of persons

«
«

1/31/22

1.4 Integrity Constraints ILLINGIS INSTITUTE
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Primary Key R(A,B):
Vz,y,z: Rz, y) ANR(z,2) > y==2
Functional Dependency R(A,B) with A->B:

Va,y,z,a: Rz, y) ANR(z,a) N\e =z > y=a

61

14 Datalog ILLINOIS INSTITUTE

OF TECHNOLOGY
* What is Datalog?
— Prolog for databases (syntax very similar)
— Alogic-based query language
* Queries (Program) expressed as set of rules

Q(Z) : —Ry(x7),..., Rp(zr).

* One Q is specified as the answer relation (the
relation returned by the query)

«

14 Datalog - Syntax ILLINOIS INSTITUTE

OF TECHNOLOGY
* A Datalog program is a set of Datalog rules
— Optionally a distinguished answer predicate
* A Datalog rule is

Q(T) : —Ri (7). .., Ro(13).

e X’s are lists of variables and constants
¢ Ri’s are relation names

* Q is arelation name

11
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1.4 Datalog - Terminology ILLINGIS INSTITUTE 1.4 Datalog - Terminology ILLINOIS INSTITU

* Left-hand side of a rule is called it’s head _
* Right-hand side of a rule is called it’s body S

* Relation are called predicates N, A are variables

. R(f) is called an atom

¢ An instance I of a database is the data

* The active domain adom(I) of an instance I is
the set of all constants that occur in I

Q(Z) : =Ry (21), ..., Rn(2y). -
66 $:

66

1-4 Datalog = TelﬂlllillOIOgy ILLINOIS INSTITUTE 1-4 Datalog - Safety ILLINOIS INSTITUTE
OF TECHNOLOGY OF TECHNOLOGY
* Intensional vs. extensional » A Datalog program is safe if all its rules are
— Extensional database (edb) safe
* What we usually call database + Arule is safe if all variables in Z occur in at
— Intensional database (idb) least one T
« Relations that occur in the head of rules (are populated _ . .
by the query) Q(iﬂ) : —Rl(ﬂfl),...,Rn(mn).
— Usually we assume that these do not overlap oo
Q@) : —Ru(1), ..., Bn(2n). _
68 \L* 69—

68 69

1.4 Datalog - Semantics ILLINOIS INSTITUTE 1.4 Datalog - Semantics ILLINGIS INSTITUTE
OF TECHNOLOGY OF TECHNOLOGY
* The instance of an idb predicate Q in a datalog _
program for an edb instance I contains all facts Q(N) : - Person(N,A) .
that can be derived by applying rules with Q in N
N=peter, A=peter: Q(peter) :- Person (peter,peter) .
the head N=peter, A=bob: Q(peter) :- Person (peter,bob) . m

* Arule derives a fact Q(c) if we can find a
binding of variables of the rule to constants
from adom(I) such that x is bound to ¢ and the
body is true

Q(X) : —Ry(21), ..., Rn(2y).

70 v@ 71—
70 71

12



1.4 Datalog ILLINOIS INSTITUTE

OF TECHNOLOGY

1/31/22

14 Datalog ILLINOIS INSTITUTE
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* Different flavors of datalog
— Conjunctive query
* Only one rule
* Expressible as Select-project-join (SPJ) query in

— Union of conjunctive queries
* Also allow union
 SPJ + set union in relational algebra
* Rules with the same head in Datalog
— Conjunctive queries with inequalities
* Also allow inequivalities, e.g., <

relational algebra (only equality and AND in selection)

1.4 Datalog — Semantics (Negation)  unos instirure
OF TECHNC

* Different flavors of datalog

— Recursion
* Rules may have recursion:
— E.g., head predicate in the body
« Fixpoint semantics based on immediate consequence
operator
— Negation (first-order queries)
* Negated relational atoms allowed

* Require that every variable used in a negated atom also
occurs in at least on positive atom (safety)

— Combined Negation + recursion
« Stronger requirements (e.g., stratification) >

1.4 Datalog - Semantics ILLINOIS.

* Arule derives a fact Q(c) if we can find a
binding of variables of the rule to constants

body is true

part of the instance

Q(Z) : —Ry(21), ..., Rn(2y).

74
74

1.4 Datalog

Example

from adom(I) such that x is bound to ¢ and the

* Anegated atom not R(X) is true if R(X) is not

1.4 Datalog

13



1.4 Datalog versus FO
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* A Datalog rule is a FO implication:
Q(Xv Y) : _R(X7 Z)aR(Za Y)
Means
Va,y:3z: R(z,2) AN R(z,y) = Q(z,y)

 Databases can be expressed as rules!

R = {(Peter, Bob), (Bob, Alice)}
R(Peter, Bob) : —
R(Bob, Alice) : —

«

1.4 Free Datalog Systems

ILLINOIS INSTITUTE
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* Datalog Education System (DES)
— http://des.sourceforge.net/
* DLV

— http://www.dlvsystem.com/dlv/

l

1.4 Equivalence

ILLINOIS INSTITUTE
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* The problem of checking query equivalence is
of different complexity depending on the
query language and whether we consider set
or bag semantics

/!

P

1.4 Model-theoretic semantics

ILLINOIS INSTITUTE
OF TECHNOLOGY

* The result of a Datalog program P is the
smallest model M for the program if
interpreted as a logical formula

— Only facts that are justified by the program are
included in the query result!

«

N

9

1.4 Containment and Equivalence

ILLINOIS INSTITUTE
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Definition: Query Equivalence

Query Qs equivalent to Q' iff for every database instance | both queries return
the same result

Q=Q & VI:Q(I)=Q'(I)

Definition: Query Containment

Query Qis contained in query Q' iff for every database instance | the result of Q
is contained in the result of Q’

QCQ & VI:QU)CQ'()

«

(o]

1

1.4 Containment and Equiv.

ILLINOIS INSTITUTE
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Q1(x,y): R(%X,¥), R(x,2).
Q2 (x,y): R(X,Y) .
Q3 (x,x): R(x,x).
Qs (x,y): R(X,v).
QS(XIX): R(X,Y), R(XIX)‘

«

(o]

3

1/31/22
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1.4 Containment and Equiv.

1.4 Complexity of Eq. and Cont.

QupZHop (x,2):
Qup2Hop (x,2):

ILLINOIS INSTITUTE
E

Relation hop(A,B) storing edges
of a graph.

Q2hop(xr z) : hop(x,y), hop(x,2z) .

hop (x,y) ,hop (x, z) .
hop (%, z) .

ILLINOIS INSTITUTE
O

1.4 Complexity of Eq. and Cont. .o istirure

OF TECHNOLOGY

Set Relational Conjunctive  Union of Monotone

semantics Algebra Queries (CQ) Conjunctive  Queries/
Queries cQz
(ucq)

Query PSPACE- NP-complete  NP-complete  NP-complete
Evaluation complete

(Combined

Complexity)

Query LOGSPACE LOGSPACE LOGSPACE LOGSPACE
Evaluation (that means  (that means  (that means  (that means
(Data inP) inP) inP) inP)
Complexity)

Query Undecidable ~ NP-complete NP-complete [2P-complete
Equivalence

Query Undecidable  NP-complete NP-complete [2P-complete
Containment

1.4 Containment Mappings

* NP-completeness for set semantics CQ and
UCQ for the containment, evaluation, and
equivalence problems is based on reducing
these problems to the same problem

ILLINOIS INSTITUTE
OF TECHNOLOGY

1/31/22

Bag Relational Conjunctive Union of
semantics Algebra Queries (€CQ) Conjunctive
Queries (UCQ)

Query Undecidable Equivalent to Undecidable
Equivalence graph

isomorphism
Query Undecidable Open Problem  Undecidable
Containment

80 & 2

86

14 BOOlean Conjunctive Quel‘ies ILLINOIS INSTITUTE

— [Chandra & Merlin, 1977]

* Notational Conventions:
— head(Q) = variables in head of query Q
— body(Q) = atoms in body of Q
—vars(Q) = all variable in Q

«

OF TECHNOLOGY

* A conjunctive query is boolean if the head
does not have any variables
— QO :- hop(x,y), hop(y,z)
— We will use Q :- ... as a convention for Q() :- ...
— What is the result of a Boolean query
* Empty result {}, e.g., no hop(x,y), hop(y,z)
« If there are tuples matching the body, then a tuple with
zero attributes is returned {()}

—->We interpret {} as false and {()} as true
— Boolean query is essentially an existential check

88 & 2

88

1.4 Boolean Conjunctive Queries o mstirure

OF TECHNOLOGY

« BCQin SQL

Hop relation: Hop (A,B)

Q :- hop(x,y)

SELECT EXISTS (SELECT * FROM hop)

15
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1.4 Containment Mappings

ILLINOIS INSTITUTE
OF

TECHNOLOGY

» How to check for containment of CQs (set)

Definition: Variable Mapping

A variable mapping Y from query Q to query Q" maps the variables of Q to
constants or variables from Q’

Definition: Containment Mapping

A containment mapping from query Q to Q' is a variable mapping { such that:

VU (head(Q)) = head(Q")
VR(z;) € body(Q) : ¥(R(%;)) € body(Q')

Theorem: Containment Mapping and Query Containment

Query Qs contained in query Q' iff there exists a containment mapping | from
Q'toQ

-
o 82

« BCQin SQL

Example

1.4 Containment Mappings

ILLINOIS INSTITUTE
OF TECHNC

Theorem: Containment Mappings and Query Containment

Query Qis contained in query Q' iff there exists a containment mapping | from
QtoQ

QC Q' < 3V : ¥is a containment mapping Q" — Q

Example

Example
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1.4 Containment Background

O R P ECHNOLOGY
* It was shown that query evaluation,
containment, equivalence as all reducible to
homomorphism checking for CQ
— Canonical conjunctive query Q' for instance I
* Interpret attribute values as variables
* The query is a conjunction of all atoms for the tuples
* I={hop(a,b), hop(b,c)} -> Q' :- hop(a,b), hop(b,c)
— Canonical instance IQ for query Q
* Interpret each conjunct as a tuple
* Interpret variables as constants
* Q :- hop(a,a) -> 12 = {hop(a,a)}

[

98
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1.4 Containment Mappings

1.4 Containment Mappings

Example

1.4 Containment Background

ILLINOIS INSTITUTE
OF TECHNOLOGY

* Containment Mapping <-> Containment

* Proofidea (boolean queries)
— (if direction)

* Assume we have a containment mapping Q, to Q,

* Consider database D

* Qx(D) is true then we can find a mapping from vars(Q,)
toD

» Compose this with the containment mapping and prove
that this is a result for Q;

-
99 %
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1.4 Containment Background
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* Containment Mapping <-> Containment

* Proofidea (boolean queries)
— (only-if direction)
* Assume Q, contained in Q;
* Consider canonical (frozen) database 102

* Evaluating Q, over 1?2 and taking a variable mapping
that is produced as a side-effect gives us a containment

mapping

-
101 %

101
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1.4 Containment Mappings ILLINGIS INSTITUTE 1.4 Containment Background ILUINGIS INsTITUTE

OF TECHNC 4 ] ECHNOLOGY

* If you are not scared and want to know more:
— Look up Chandra and Merlins paper(s)
— The text book provides a more detailed overview
of the proof approach

— Look at the slides from Phokion Kolaitis excellent
lecture on database theory
« https://classes.soe.ucsc.edu/cmps277/Winter10/

102
102 103

1.4 Containment Mappings ILLINOIS.

1.4 Containment Background LLINOIS INSTITUTE
OF TEC

TECHNC

* A more intuitive explanation why containment Example
mappings work
— Variable naming is irrelevant for query results
— If there is a containment mapping Q to Q’
. gl,aen every condition enforced in Q is also enforced by

* Q” may enforce additional conditions

-
104 i

104

1.4 Containment Background ILLINGIS INSTITUTE 1.4 Containment Mappings
OF TECHNC
* From boolean to general conjunctive queries Example
— Instead of returning true or false, return bindings
of variables

— Recall that containment mappings enforce that the
head is mapped to the head

— -> same tuples returned, but again Q’ s condition is
more restrictive

—|
106 i

106
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ILLINOIS INSTITUTE
OF TECHNOLOGY

1.4 Similarity Measures

* Problem faced by multiple integration tasks
— Given two objects, how similar are they

—E.g., given two attribute names in schema
matching, given two values in data fusion/entity
resolution, ...

[

108

ILLINOIS INSTITUTE
OF TECHNOLOGY

Definition: Similarity Measure

Function d(p,q) where p and q are objects, that returns a real score with
* d(pp)=0
+ dpg)>=0

1.4 Similarity Measures

— Interpretation: the lower the score the “more similar”
the objects are

— We require d(p,p)=0, because nothing can be more
similar to an object than itself

— Note: often scores are normalized to the range [0,1]

«

110
110

1.4 Similarity Measures

ILLINOIS INSTITUTE
OF TECHNOLOGY

Definition: Metric

Function d(p,q) where p and q are objects, that returns a real score with
* Non-negative d(p,q) >=0

* Symmetry d(p,q) =d(q,p)

* Identity of indiscernibles d(p,q) = 0iff p=q

+ Triangle inequality d(p,q) + d(q,r) >=d(p,r)

* Object models
— Multidimensional (feature vector model)
* Object is described as a vector of values - one for each
dimension out of a given set of dimensions
* E.g., Dimensions are gender (male/female), age (0-120),
and salary (0-1,000,000). An example object is
[male,80,70,000]
— Strings
* E.g., how similar is “Poeter” to “Peter”
— Graphs and Trees
* E.g., how similar are two XML models

09 S 2
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1.4 Similarity Measures

ILLINOIS INSTITUTE
OF TECHNOLOGY

String equality: d(p,q) = 0 if p=q
strings d(p,q) = 1 else
Euclidian distance: d(p,q) = ol — alil)2
N-dimensional space Z;(ph] e

Edit distance: d(p,q) = minimum number of
strings single character

111

111

1.4 Similarity Measures

ILLINOIS INSTITUTE
OF TECHNOLOGY

Definition: Metric

Function d(p,q) where p and q are objects, that returns a real score with
* Non-negative d(p,q) >=0

* Symmetry d(p,q) =d(q,p)

 Identity of indiscernibles d(p,q) = 0iff p=q

+ Triangle inequality d(p,q) + d(q,r) >=d(p,r)

113
113
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1.4 Similarity Measures ILLINOIS INSTITUTE
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* Why do we care whether d is a metric?
— Some data mining algorithms only work for
metrics
* E.g., some clustering algorithms such as k-means
* E.g., clustering has been used in entity resolution
— Metric spaces allow optimizations of some
methods
* E.g., Nearest Neighboorhood-search: find the most
similar object to an object p. This problem can be

efficiently solved using index structures that only
apply to metric spaces

«
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Outline ILLINOIS INSTITUTE

0) Course Info

1) Introduction

2) Data Preparation and Cleaning
3) Schema matching and mapping
4) Virtual Data Integration

5) Data Exchange

6) Data Warehousing

7) Big Data Analytics

8) Data Provenance

116

Sumlllary ILLINOIS INSTITUTE

OF TECHNOLOGY

» Heterogeneity
— Types of heterogeneity
— Why do they arise?
— Hint at how to address them
* Autonomy
 Data Integration Tasks
* Data Integration Architectures
» Background
— Datalog + Query equivalence/containment +
Similarity + Integrity constraints

115

116

115
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