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2. Overview

• Topics covered in this part
– Causes of Dirty Data
– Constraint-based Cleaning
– Outlier-based and Statistical Methods
– Entity Resolution
– Data Fusion
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2. Causes of “Dirty” Data

• Manual data entry or result of erroneous 
integration
– Typos: 
• “Peter” vs. “Pteer”

– Switching fields
• “FirstName: New York, City: Peter”

– Incorrect information
• “City:New York, Zip: 60616”

–Missing information
• “City: New York, Zip: “
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2. Causes of “Dirty” Data

• Manual data entry or result of erroneous 
integration (cont.)
– Redundancy: 
• (ID:1, City: Chicago, Zip: 60616)
• (ID:2, City: Chicago, Zip: 60616)

– Inconsistent references to entities
• Dept. of Energy, DOE, Dep. Of Energy, …
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2. Cleaning Methods

• Enforce Standards
– Applied in real world
– How to develop a standard not a fit for this lecture
– Still relies on no human errors

• Constraint-based cleaning
– Define constraints for data
– “Make” data fit the constraints

• Statistical techniques
– Find outliers and smoothen or remove
• E.g., use a clustering algorithm

5 CS520 - 1) Introduction
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2. Overview

• Topics covered in this part
– Causes of Dirty Data
– Constraint-based Cleaning
– Outlier-based and Statistical Methods
– Entity Resolution
– Data Fusion
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2.1 Cleaning Methods

• Constraint-based cleaning
– Choice of constraint language
– Detecting violations to constraints
– Fixing violations (automatically?)

7 CS520 - 1) Introduction

7

2.1 Constraint Languages

• First work focused on functional dependencies 
(FDs)

• Extensions of FDs have been proposed to 
allow rules that cannot be expressed with FDs
– E.g., conditional FDs only enforce the FD is a 

condition is met
• -> finer grained control, e.g., zip -> city only if country 

is US
• Constraints that consider master data
–Master data is highly reliable data such as a 

government issued zip, city lookup table
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2.1 Constraint Languages (cont.)

• Denial constraints
– Generalize most other proposed constraints
– State what should not be true
– Negated conjunction of relational and comparison 

atoms

• Here we will look at FDs mainly and a bit at 
denial constraints
– Sometimes use logic based notation introduced 

previously
9 CS520 - 1) Introduction

8~x : ¬(�(~x))
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2.1 Example Constraints
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Example: Constraints Languages

C1: The zip code uniquely determines the city

C2: Nobody should earn more than their direct superior

C3: Salaries are non-negative

SSN zip city name boss salary

333-333-3333 60616 New York Peter Gert 50,000

333-333-9999 60615 Chicago Gert NULL 40,000

333-333-5599 60615 Schaumburg Gertrud Hans 10,000

333-333-6666 60616 Chicago Hans NULL 1,000,000

333-355-4343 60616 Chicago Malcom Hans 20,000

10

2.1 Example Constraints
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Example: Constraints Languages

C1: The zip code uniquely determines the city
- expressible as functional dependency

C2: Nobody should earn more than their direct superior
- e.g., denial constraint

C3: Salaries are non-negative

- e.g., denial constraint

SSN zip city name boss salary

333-333-3333 60616 New York Peter Gert 50,000

333-333-9999 60615 Chicago Gert NULL 40,000

333-333-5599 60615 Schaumburg Gertrud Hans 10,000

333-333-6666 60616 Chicago Hans NULL 1,000,000

333-355-4343 60616 Chicago Malcom Hans 20,000
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2.1 Example Constraints
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Example: Constraints Languages

C1: The zip code uniquely determines the city
FD1: zip -> city

C2: Nobody should earn more than their direct superior

C3: Salaries are non-negative

SSN zip city name boss salary

333-333-3333 60616 New York Peter Gert 50,000

333-333-9999 60615 Chicago Gert NULL 40,000

333-333-5599 60615 Schaumburg Gertrud Hans 10,000

333-333-6666 60616 Chicago Hans NULL 1,000,000

333-355-4343 60616 Chicago Malcom Hans 20,000

8¬(E(x, y, z, u, v, w) ^ E(x0, y0, z0, u0, v0, w0) ^ x = x0 ^ y 6= y0)

8¬(E(x, y, z, u, v, w) ^ E(x0, y0, z0, u0, v0, w0) ^ v = u0 ^ w > w0)

8¬(E(x, y, z, u, v, w) ^ w < 0)
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2.1 Constraint based Cleaning 
Overview
• Define constraints

• Given database D
– 1) Detect violations of constraints
• We already saw example of how this can be done using 

queries. Here a bit more formal
– 2) Fix violations
• In most cases there are many different ways to fix the 

violation by modifying the database (called solution)
– What operations do we allow: insert, delete, update
– How do we choose between alternative solutions

13 CS520 - 1) Introduction
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2.1 Constraint Repair Problem

• This would allow us to take any I’
– E.g., empty for FD constraints

• We do not want to loose the information in I 
(unless we have to)

• Let us come back to that later

14 CS520 - 1) Introduction

Given set of constraints Σ and an database instance I which violates the 
constraints find a clean instance I’ so that I’ fulfills Σ

Definition: Constraint Repair Problem
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2.1 Constraint based Cleaning 
Overview
• Study 1) + 2) for FDs

• Given database D
– 1) Detect violations of constraints
• We already saw example of how this can be done using 

queries. Here a bit more formal
– 2) Fix violations
• In most cases there are many different ways to fix the 

violation by modifying the database (called solution)
– What operations do we allow: insert, delete, update
– How do we choose between alternative solutions
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2.1 Example Constraints
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Example: Constraints

FD1: zip -> city

SSN zip city name

333-333-3333 60616 New York Peter

333-333-9999 60615 Chicago Gert

333-333-5599 60615 Schaumburg Gertrud

333-333-6666 60616 Chicago Hans

333-355-4343 60616 Chicago Malcom
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2.1 Example Constraints
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Example: Constraint Violations

FD1: zip -> city

SSN zip city name

333-333-3333 60616 New York Peter

333-333-9999 60615 Chicago Gert

333-333-5599 60615 Schaumburg Gertrud

333-333-6666 60616 Chicago Hans

333-355-4343 60616 Chicago Malcom

17
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2.1 Example Constraints
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Example: Constraint Violations

How to repair?

Deletion:
- remove some conflicting tuples
- quite destructive

Update:

- modify values to resolve the conflict
- equate RHS values (city here)
- disequate LHS value (zip)

SSN zip city name

333-333-3333 60616 New York Peter

333-333-9999 60615 Chicago Gert

333-333-5599 60615 Schaumburg Gertrud

333-333-6666 60616 Chicago Hans

333-355-4343 60616 Chicago Malcom

18

2.1 Constraint based Cleaning 
Overview
• How to repair?
• Deletion:
– remove some conflicting tuples
– quite destructive

• Update:
–modify values to resolve the conflict
– equate RHS values (city here)
– disequate LHS value (zip)

• Insertion?
– Not for FDs, but e.g., FKs

19 CS520 - 1) Introduction
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2.1 Example Constraints

20 CS520 - 1) Introduction

Heterogeneity

System Structural Semantic

S o ftw are In te rfac e D atam o d e l S c h e m a
N am in

g

Id e n tit

y

V a lu e  

c o n flic ts

Example: Constraint Repair

Deletion:

Delete Chicago or Schaumburg?

Delete New York or the two Chicago tuples?

- one tuple deleted vs. two tuples deleted

SSN zip city name

333-333-3333 60616 New York Peter

333-333-9999 60615 Chicago Gert

333-333-5599 60615 Schaumburg Gertrud

333-333-6666 60616 Chicago Hans

333-355-4343 60616 Chicago Malcom
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2.1 Example Constraints
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Heterogeneity

System Structural Semantic

S o ftw are In te rfac e D atam o d e l S c h e m a
N am in

g

Id e n tit

y

V a lu e  

c o n flic ts

Example: Constraint Repair

Update equate RHS:

Update Chicago->Schaumburg or Schaumburg->Chicago

Update New York->Chicago or Chicago->New York

- one tuple deleted vs. two cells updated

Update disequate LHS:

Which tuple to update?

What value do we use here? How to avoid creating other conflicts?

SSN zip city name

333-333-3333 60616 New York Peter

333-333-9999 60615 Chicago Gert

333-333-5599 60615 Schaumburg Gertrud

333-333-6666 60616 Chicago Hans

333-355-4343 60616 Chicago Malcom

21

2.1 Constraint based Cleaning 
Overview

• Principle of minimality
– Choose repair that minimally modifies database
–Motivation: consider the solution that deletes every 

tuple

• Most update approaches equate RHS because 
there is usually no good way to choose LHS 
values unless we have master data
– E.g., update zip to 56423 or 52456 or 22322 …

22 CS520 - 1) Introduction
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2.1 Detecting Violations

• Given FD A -> B on R(A,B)
– Recall logical representation
– Forall X, X’: R(X,Y) and R(X’,Y’) and X=X’ -> Y=Y’
– Only violated if we find two tuples where A=A’, but B 

!= B’
– In datalog

• Q(): R(X,Y), R(X’,Y’), X=X’, Y!=Y’
– In SQL
SELECT EXISTS (SELECT *

FROM R x, R y

WHERE x.A=y.A AND x.B<>y.B)

23 CS520 - 1) Introduction
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2.1 Example Constraints
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Heterogeneity

System Structural Semantic

S o ftw are In te rfac e D atam o d e l S c h e m a
N am in

g

Id e n tit

y
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c o n flic ts

Example: SQL Violation Detection

Relation: Person(name,city,zip)

FD1: zip -> city

Violation Detection Query

SELECT EXISTS (SELECT *

FROM Person x, Person y
WHERE x.zip = y.zip

AND x.city <> y.city)

To know which tuples caused the conflict:

SELECT *
FROM Person x, Person y
WHERE x.zip = y.zip

AND x.city <> y.city)

24

2.1 Fixing Violations

• Principle of minimality
– Choose solution that minimally modifies the 

database
– Updates:
• Need a cost model

– Deletes:
• Minimal number of deletes

25 CS520 - 1) Introduction
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2.1 Constraint Repair Problem

• Cost metrics that have been used
– Deletion + Insertion

• S-repair: minimize measure above under set inclusion
• C-repair: minimize cardinality

– Update
• Assume distance metric d for attribute values

26 CS520 - 1) Introduction

Given set of constraints Σ and a database instance I which violates the 
constraints find a clean instance I’ (does not violate the constraints) with 
cost(I,I’) being minimal

Definition: Constraint Repair Problem (restated)

�(I, I 0) = (I � I 0) [ (I 0 � I)

26

2.1 Cost Metrics

• Deletion + Insertion

• S-repair: minimize measure above under set inclusion
• C-repair: minimize cardinality

• Update
• Assume single relation R with uniquely identified tuples
• Assume distance metric d for attribute values
• Schema(R) = attributes in schema of relation R
• t’ is updated version of tuple t
• Minimize: 

27 CS520 - 1) Introduction

�(I, I 0) = (I � I 0) [ (I 0 � I)

X

t2R

X

A2Schema(R)

d(t.A, t0.A)
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2.1 Cost Metrics

• Update
• Assume single relation R with uniquely identified tuples
• Assume distance metric d for attribute values
• Schema(R) = attributes in schema of relation R
• t’ is updated version of tuple t
• Minimize: 

• We focus on this one
• This is NP-hard
– Heuristic algorithm

28 CS520 - 1) Introduction

X

t2R

X

A2Schema(R)

d(t.A, t0.A)
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2.1 Naïve FD Repair Algorithm

• FD Repair Algorithm: 1. Attempt
– For each FD X -> Y in Σ run query to find pairs of 

tuples that violate the constraint
– For each pair of tuples t and t’ that violate the 

constraint
• update t.Y to t’.Y

– choice does not matter because cost is symmetric, right?

29 CS520 - 1) Introduction
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2.1 Constraint Repair
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Example: Constraint Repair

t1 and t4: set t1.city = Chicago
t1 and t5: set t1.city = Chicago

t2 and t3: set t2.city = Schaumburg

SSN zip city name

333-333-3333 60616 New York Peter

333-333-9999 60615 Chicago Gert

333-333-5599 60615 Schaumburg Gertrud

333-333-6666 60616 Chicago Hans

333-355-4343 60616 Chicago Malcom

t1

t2

t3

t4

t5

30

2.1 Problems with the Algorithm

• FD Repair Algorithm: 1. Attempt
– For each FD X -> Y in Σ run query to find pairs of 

tuples that violate the constraint
– For each pair of tuples t and t’ that violate the 

constraint: t.X = t’.X and t.Y != t’.Y
• update t.Y to t’.Y

– choice does not matter because cost is symmetric, right?

–Our updates may cause new violations!

31 CS520 - 1) Introduction
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2.1 Constraint Repair
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Example: Constraint Repair

t4 and t1: set t4.city = New York
t1 and t5: set t1.city = Chicago

t2 and t3: set t2.city = Schaumburg

Now t1 and t4 and t4 and t5 in violation!

SSN zip city name

333-333-3333 60616 New York Peter

333-333-9999 60615 Chicago Gert

333-333-5599 60615 Schaumburg Gertrud

333-333-6666 60616 Chicago Hans

333-355-4343 60616 Chicago Malcom

t
1

t
2
t
3

t
4
t
5

32

2.1 Problems with the Algorithm

• FD Repair Algorithm: 2. Attempt
– I’ = I
– 1) For each FD X -> Y in Σ run query to find pairs 

of tuples that violate the constraint
– 2) For each pair of tuples t and t’ that violate the 

constraint: t.X = t’.X and t.Y != t’.Y
• update t.Y to t’.Y

– choice does not matter because cost is symmetric, right?

– 3) If we changed I’ goto 1)

33 CS520 - 1) Introduction
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2.1 Problems with the Algorithm

• FD Repair Algorithm: 2. Attempt
– I’ = I
– 1) For each FD X -> Y in Σ run query to find pairs 

of tuples that violate the constraint
– 2) For each pair of tuples t and t’ that violate the 

constraint: t.X = t’.X and t.Y != t’.Y
• update t.Y to t’.Y

– choice does not matter because cost is symmetric, right?

– 3) If we changed I’ goto 1)
• May never terminate

34 CS520 - 1) Introduction
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2.1 Constraint Repair
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Example: Constraint Repair

t4 and t1: set t4.city = New York
t1 and t5: set t1.city = Chicago

Now t1 and t4 and t4 and t5 in violation!

t4 and t1: set t1.city = New York
T5 and t4: set t4.city = Chicago

repeat

SSN zip city name

333-333-3333 60616 New York Peter

333-333-9999 60615 Chicago Gert

333-333-5599 60615 Schaumburg Gertrud

333-333-6666 60616 Chicago Hans

333-355-4343 60616 Chicago Malcom

t1

t2

t3

t4

t5

35
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2.1 Problems with the Algorithm

• FD Repair Algorithm: 2. Attempt
– Even if we succeed the repair may not be 

minimal. There may be many tuples with the 
same X values
• They all have to have the same Y value
• Choice which to update matters!

36 CS520 - 1) Introduction
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2.1 Constraint Repair
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Example: Constraint Repair

Cheaper: t1.city = Chicago
Not so cheap: set t4.city and t5.city = New York

SSN zip city name

333-333-3333 60616 New York Peter

333-333-9999 60615 Chicago Gert

333-333-5599 60615 Schaumburg Gertrud

333-333-6666 60616 Chicago Hans

333-355-4343 60616 Chicago Malcom

t
1

t
2
t
3

t
4
t
5
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2.1 Problems with the Algorithm

• FD Repair Algorithm: 3. Attempt
– Equivalence Classes
• Keep track of sets of cells (tuple,attribute) that have to 

have the same values in the end (e.g., all Y attribute 
values for tuples with same X attribute value)
• These classes are updated when we make a choice
• Choose Y value for equivalence class using minimality, 

e.g., most common value
– Observation
• Equivalence Classes may merge, but never split if we 
only update RHS of all tuples with same X at once
• -> we can find an algorithm that terminates

38 CS520 - 1) Introduction
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2.1 Problems with the Algorithm

• FD Repair Algorithm: 3. Attempt
– Initialize: 
• Each cell in its own equivalence class
• Put all cells in collection unresolved

–While unresolved is not empty
• Remove tuple t from unresolved
• Pick FD X->Y (e.g., random)
• Compute set of tuples S that have same value in X
• Merge all equivalence classes for all tuples in S and 

attributes in Y
• Pick values for Y (update all tuples in S to Y)

39 CS520 - 1) Introduction
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2.1 Problems with the Algorithm

• FD Repair Algorithm: 3. Attempt
• Algorithm using this idea:
–More heuristics to improve quality and 

performance
• Cost-based pick of next EQ’s to merge

– Also for FKs (Inclusion Constraints)

A Cost-Based Model and Effective Heuristic for Repairing Constraints by Value Modification

40 CS520 - 1) Introduction
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2.1 Consistent Query Answering

• As an alternative to fixing the database which 
requires making a choice we could also leave it 
dirty and try to resolve conflicts at query time
– Have to reason over answers to the query without 

knowing which of the possible repairs will be 
chosen

– Intuition: return tuples that would be in the query 
result for every possible repair

41 CS520 - 1) Introduction
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2.1 Constraint Repair
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Example: Constraint Repair

Cheaper: t1.city = Chicago
Not so cheap: set t4.city and t5.city = New York

SSN zip city name

333-333-3333 60616 New York Peter

333-333-9999 60615 Chicago Gert

333-333-5599 60615 Schaumburg Gertrud

333-333-6666 60616 Chicago Hans

333-355-4343 60616 Chicago Malcom

t1

t2

t3

t4

t5

42

2. Overview

• Topics covered in this part
– Causes of Dirty Data
– Constraint-based Cleaning
–Outlier-based and Statistical Methods
– Entity Resolution
– Data Fusion

43 CS520 - 1) Introduction
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2.2 Statistical and Outlier

• Assumption
– Errors can be identified as outliers

• How do we find outliers?
– Similarity-based:

• Object is dissimilar to all (many) other objects
• E.g., clustering, objects not in cluster are outliers

– Some type of statistical test:
• Given a distribution (e.g., fitted to the data)
• How probable is it that the point has this value?
• If low probability -> outlier

44 CS520 - 1) Introduction
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2. Overview

• Topics covered in this part
– Causes of Dirty Data
– Constraint-based Cleaning
– Outlier-based and Statistical Methods
– Entity Resolution
– Data Fusion
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2.3 Entity Resolution

• Entity Resolution (ER)
• Alternative names
– Duplicate detection
– Record linkage
– Reference reconciliation
– Entity matching
–…

46 CS520 - 1) Introduction
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2.3 Entity Resolution

• Intuitively, E should be based on how 
similar t and t’ are
– Similarity measure?

• E should be an equivalence relation
– If t is the same as t’ and t’ is the same as t’’

then t should be the same as t’’

47 CS520 - 1) Introduction

Given sets of tuples A compute equivalence relation E(t,t’) which denotes that 
tuple t and t’ represent the same entity.

Definition: Entity Resolution Problem

47
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2.3 Entity Resolution

48 CS520 - 1) Introduction

Example: Two tuples (objects) that represent the same entity

SSN zip city name

333-333-3333 60616 Chicago Peter

SSN zip city name

3333333333 IL 60616 Petre

48

2.3 Entity Resolution

• Similarity based on similarity of attribute 
values
– Which distance measure is appropriate?
– How do we combine attribute-level distances?
– Do we consider additional information?

• E.g., foreign key connections
– How similar should duplicates be?

• E.g., fixed similarity threshold
– How to guarantee transitivity of E

• E.g., do this afterwards

49 CS520 - 1) Introduction
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2.3 Entity Resolution

50 CS520 - 1) Introduction

Example: Per attribute similarity

SSN zip city name

333-333-3333 60616 Chicago Peter

SSN zip city name

3333333333 IL 60616 Petre

1 0.8 0? 0.6

50

2.3 Entity Resolution – Distance 
Measures

• Edit-distance
–measures similarity of two strings
– d(s,s’) = minimal number of insert, replace, 

delete operations (single character) that 
transform s into s’

– Is symmetric (actually a metric)
• Why?

51 CS520 - 1) Introduction
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2.3 Entity Resolution

52 CS520 - 1) Introduction

Given two strings s, s’ we define the edit distance d(s,s’) as the minimum 
number of single character insert, replacements, deletions that transforms s 
into s’

Definition: Edit Distance

NEED -> STREET

Trivial solution: delete all chars in NEED, then 
insert all chars in STREET

- gives upper bound on distance len(NEED) + 
len(STREET) = 10

Example:

52

2.3 Entity Resolution

53 CS520 - 1) Introduction

NEED -> STREET

Minimal solution:
- insert S
- insert T
- replace N with R
- replace D with T

d(NEED,STREET) = 4

Example:

53
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2.3 Entity Resolution

• Principal of optimality
– Best solution of a subproblem is part of the best solution for the whole 

problem

• Dynamic programming algorithm
– D(i,j) is the edit distance between prefix of len i of s and prefix of len j 

of s’
– D(len(s),len(s’)) is the solution
– Represented as matrix

– Populate based on rules shown on the next slide

54 CS520 - 1) Introduction
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2.3 Entity Resolution

• Recursive definition
– D(i,0) = i
• Cheapest way of transforming prefix s[i] into empty 

string is by deleting all i characters in s[i]
– D(0,j) = j
• Same holds for s’[j]

– D(i,j) = min {
• D(i-1,j) + 1
• D(i,j-1) + 1
• D(i-1,j-1) + d(i,j) with d(i,j) = 1 if s[i] != s[j] and 0 else
}

55 CS520 - 1) Introduction
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2.3 Entity Resolution
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NEED -> STREET

Example:

S T R E E T

0 1 2 3 4 5 6

N 1

E 2

E 3

D 4

56

2.3 Entity Resolution
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NEED -> STREET

Example:

S T R E E T

0 1 2 3 4 5 6

N 1 1

E 2

E 3

D 4

57

2.3 Entity Resolution
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NEED -> STREET

Example:

S T R E E T

0 1 2 3 4 5 6

N 1 1 2

E 2 2

E 3

D 4

58

2.3 Entity Resolution

59 CS520 - 1) Introduction

NEED -> STREET

Example:

S T R E E T

0 1 2 3 4 5 6

N 1 1 2 3

E 2 2 2

E 3 3

D 4

59
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2.3 Entity Resolution

60 CS520 - 1) Introduction

NEED -> STREET

Example:

S T R E E T

0 1 2 3 4 5 6

N 1 1 2 3 4

E 2 2 2 3

E 3 3 3

D 4 4

60

2.3 Entity Resolution
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NEED -> STREET

Example:

S T R E E T

0 1 2 3 4 5 6

N 1 1 2 3 4 5

E 2 2 2 3 3

E 3 3 3 3

D 4 4 4

61

2.3 Entity Resolution

62 CS520 - 1) Introduction

NEED -> STREET

Example:

S T R E E T

0 1 2 3 4 5 6

N 1 1 2 3 4 5 6

E 2 2 2 3 3 4

E 3 3 3 3 3

D 4 4 4 4

62

2.3 Entity Resolution
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NEED -> STREET

Example:

S T R E E T

0 1 2 3 4 5 6

N 1 1 2 3 4 5 6

E 2 2 2 3 3 4 5

E 3 3 3 3 3 3 4

D 4 4 4 4 4 4 4

63

2.3 Entity Resolution – Distance 
Measures

• Other sequence-based measures for string similarity
– Needleman-Wunsch

• Missing character sequences can be penalized differently from 
character changes

– Affine Gap Measure
• Limit influence of longer gaps
• E.g., Peter Friedrich Mueller vs. Peter Mueller

– Smith-Waterman Measure
• More resistant to reordering of elements in the string
• E.g., Prof. Franz Mueller vs. F. Mueller, Prof.

64 CS520 - 1) Introduction
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2.3 Entity Resolution – Distance 
Measures

• Other sequence-based measures for string 
similarity
– Jaro-Winkler
• Consider shared prefixes
• Consider distance of same characters in strings
• E.g., johann vs. ojhann vs. ohannj

– See textbook for details!
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2.3 Entity Resolution – Distance 
Measures
• Token-set based measures
– Split string into tokens

• E.g., single characters
• E.g., words if string represents a longer text

– Potentially normalize tokens
• E.g., word tokens replace word with its stem

– Generating, generated, generates are all replaced with 
generate

– Represent string as set (multi-set) of tokens 

66 CS520 - 1) Introduction
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2.3 Entity Resolution

67 CS520 - 1) Introduction

Input string:
S = “the tokenization of strings is commonly used in 
information retrieval”

Set of tokens:
Tok(S) = {commonly, in, information, is, of,

retrieval, strings, the, tokenization, used}

Bag of tokens:
Tok(S) = {commonly:1, in:1, information:1, is:1, 

of:1, retrieval:1,strings:1, the:1,
tokenization:1, used:1}

Example: Tokenization

67

2.3 Entity Resolution – Distance 
Measures

• Jaccard-Measure
– Bs = Tok(s) = token set of string s
– Jaccard measures relative overlap of tokens in 

two strings
• Number of common tokens divided by total number 

of tokens
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djacc(s, s
0) =

kBs \Bs0k
kBs [Bs0k

68

2.3 Entity Resolution
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Input string:
S = “nanotubes are used in these experiments to…”
S’= “we consider nanotubes in our experiments…”
S’’= “we prove that P=NP, thus solving …”

Tok(S)  = {are,experiments,in,nanotubes,these,to,used}
Tok(S’) = {consider,experiments,in,nanotubes,our,we}
Tok(S’’)= {P=NP,prove,solving,that,thus,we}

djacc(S,S’)=
djacc(S,S’’)=
djacc(S’,S’’)=

Example: Tokenization

69

2.3 Entity Resolution

70 CS520 - 1) Introduction

Input string:
S = “nanotubes are used in these experiments to…”
S’= “we consider nanotubes in our experiments…”
S’’= “we prove that P=NP, thus solving …”

Tok(S)  = {are,experiments,in,nanotubes,these,to,used}
Tok(S’) = {consider,experiments,in,nanotubes,our,we}
Tok(S’’)= {P=NP,prove,solving,that,thus,we}

djacc(S,S’)  = 3 / 10 = 0.3    
djacc(S,S’’) = 0 / 13 = 0
djacc(S’,S’’)= 1 / 11 = 0.0909

Example: Tokenization
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2.3 Entity Resolution

• Other set-based measures
– TF/IDF: term frequency, inverse document 

frequency
• Take into account that certain tokens are more common 

than others
• If two strings (called documents for TF/IDF) overlap on 

uncommon terms they are more likely to be similar than 
if they overlap on common terms
– E.g., the vs. carbon nanotube structure
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2.3 Entity Resolution

• TF/IDF: term frequency, inverse document 
frequency
– Represent documents as feature vectors

• One dimension for each term
• Value computed as frequency times IDF

– Inverse of frequency of term in the set of all documents

– Compute cosine similarity between two feature vectors
• Measure how similar they are in term distribution (weighted 

by how uncommon terms are)
• Size of the documents does not matter

– See textbook for details

72 CS520 - 1) Introduction
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2.3 Entity Resolution

• Entity resolution
– Concatenate attribute values of tuples and use 

string similarity measure
• Loose information encoded by tuple structure
• E.g., [Gender:male,Salary:9000] 

-> “Gender:male,Salary:9000”
or -> “male,9000”

– Combine distance measures for single attributes
• Weighted sum or more complex combinations

– E.g., 

– Use quadratic distance measure
• E.g., earth-movers distance

73 CS520 - 1) Introduction

d(t, t0) = w1 ⇥ dA(t.A, t0.A) + w2 ⇥ dB(t.B, t0.B)

73

2.3 Entity Resolution

• Entity resolution
– Rule-based approach
• Set of if this than that rules

– Learning-based approaches
– Clustering-based approaches
– Probabilistic approaches to matching
– Collective matching

74 CS520 - 1) Introduction
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2.3 Entity Resolution

• Weighted linear combination
– Say tuples have n attributes
– wi: predetermined weight of an attribute
– di(t,t’): similarity measure for the ith attribute

• Tuples match if d(t,t’) > β for a threshold β
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d(t, t0) =
nX

i=0

wi ⇥ di(t, t
0)

75

2.3 Entity Resolution

76 CS520 - 1) Introduction

Assumption: SSNs and names are most important, city and 
zip are not very predictive

Example: Weighted sum of attribute similarities

SSN zip city name

333-333-3333 60616 Chicago Peter

SSN zip city name

3333333333 IL 60616 Petre

1 0.8 0? 0.6

wSSN = 0.4, wzip = 0.05, wcity = 0.15, wname = 0.4

d(t, t0) = 0.4⇥ 1 + 0.05⇥ 0.8 + 0.15⇥ 0 + 0.4⇥ 0.6

= 0.4 + 0.04 + 0 + 0.24

= 0.68
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2.3 Entity Resolution

• Weighted linear combination
– How to determine weights?
• E.g., have labeled training data and use ML to learn 

weights 
– Use non-linear function?

77 CS520 - 1) Introduction
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2.3 Entity Resolution

• Entity resolution
– Rule-based approach
– Learning-based approaches
– Clustering-based approaches
– Probabilistic approaches to matching
– Collective matching

78 CS520 - 1) Introduction
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2.3 Entity Resolution

• Rule-based approach
– Collection (list) of rules
– if dname(t,t’) < 0.6 then unmatched
– if dzip(t,t’) = 1 and t.country = USA then matched
– if t.country != t’.country then unmatched

• Advantages
– Easy to start, can be incrementally improved

• Disadvantages
– Lot of manual work, large rule-bases hard to 

understand
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79

2.3 Entity Resolution

• Entity resolution
– Rule-based approach
– Learning-based approaches
– Clustering-based approaches
– Probabilistic approaches to matching
– Collective matching
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2.3 Entity Resolution

• Learning-based approach
– Build all pairs (t,t’) for training dataset
– Represent each pair as feature vector from, e.g., 

similarities
– Train classifier to return {match,no match}

• Advantages
– automated

• Disadvantages
– Requires training data

81 CS520 - 1) Introduction
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2.3 Entity Resolution

• Entity resolution
– Rule-based approach
– Learning-based approaches
– Clustering-based approaches
– Probabilistic approaches to matching
– Collective matching
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82

2.3 Entity Resolution

• Clustering-based approach
– Apply clustering method to group inputs
– Typically hierarchical clustering method
– Clusters now represent entities
• Decide how to merge based on similarity between 

clusters
• Advantages
– Automated, no training data required

• Disadvantages
– Choice of cluster similarity critical
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2.3 Entity Resolution

• Entity resolution
– Rule-based approach
– Learning-based approaches
– Clustering-based approaches
– Probabilistic approaches to matching
– Collective matching
• See text book

84 CS520 - 1) Introduction

84

2. Overview

• Topics covered in this part
– Causes of Dirty Data
– Constraint-based Cleaning
– Outlier-based and Statistical Methods
– Entity Resolution
– Data Fusion
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2.4 Data Fusion

• Data Fusion = how to combine (possibly 
conflicting) information from multiple objects 
representing the same entity
– Choose among conflicting values
• If one value is missing (NULL) choose the other one
• Numerical data: e.g., median, average
• Consider sources: have more trust in certain data 

sources
• Consider value frequency: take most frequent value
• Timeliness: latest value
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Outline

0) Course Info
1) Introduction
2) Data Preparation and Cleaning
3) Schema matching and mapping
4) Virtual Data Integration
5) Data Exchange
6) Data Warehousing 
7) Big Data Analytics
8) Data Provenance
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