ILLINOIS INSTITUTE
OF TECHNOLOGY

CS520

Data Integration, Warehousing, and

Provenance

7. Big Data Systems and Integration

IIT DBGroup

Boris Glavic
http://www.cs.lit.edu/~glavic/
http://www.cs.iit.edu/~cs520/

http://www.cs.iit.edu/~dbgroup/ SF'

http://www.cs.iit.edu/~glavic/
http://www.cs.iit.edu/~cs520/
http://www.cs.iit.edu/~dbgroup/

OU.tline ILLINOIS INSTITUTE

OF TECHNOLOGY

0) Course Info

1) Introduction

2) Data Preparation and Cleaning
3) Schema matching and mapping
4) Virtual Data Integration

5) Data Exchange

6) Data Warchousing

7) Big Data Analytics

8) Data Provenance

3. Blg Data AnaIYtiCS ILLINOIS INSTITUTE

OF TECHNOLOGY

* Big Topic, big Buzzwords ;-)
* Here

— Overview of two types of systems
* Key-value/document stores
* Mainly: Bulk processing (MR, graph, ...)
— What is new compared to single node systems?
— How do these systems change our approach to integration/analytics

* Schema first vs. Schema later
e Pay-as-you-go

3. Blg Data OVGI‘VieW ILLINOIS INSTITUTE

OF TECHNOLOGY

* 1) How does data processing at scale (read using many
machines) differ from what we had before?

— Load-balancing
— Fault tolerance
— Communication

— New abstractions
* Distributed file systems/storage

3. Blg Data OVGI‘VieW ILLINOIS INSTITUTE

OF TECHNOLOGY

* 2) Overview of systems and how they
achieve scalability

— Bulk processing
* MapReduce, Shark, Flink, Hyracks, ...

* Graph: e.g., Giraph, Pregel, ...

— Key-value/document stores = NoSQL
* Cassandra, MongoDB, Memcached, Dynamo, ...

3. Blg Data OVGI‘VieW ILLINOIS INSTITUTE

OF TECHNOLOGY

* 2) Overview of systems and how they achieve scalability
— Bulk processing
* MapReduce, Shark, Flink,
— Fault tolerance
* Replication
* Handling stragglers
— Load balancing
 Partitioning
» Shuffle

3. Blg Data OVGI‘VieW ILLINOIS INSTITUTE

OF TECHNOLOGY

* 3) New approach towards integration

— Large clusters enable directly running queries
over semi-structured data (within feasible time)

* Take a click-stream log and run a query

— One of the reasons why pay-as-you-go 1s now
feasible
* Previously: designing a database schema upfront and

designing a process (e.g., ETL) for cleaning and
transforming data to match this schema, then query

* Now: start analysis directly, clean and transform data if
needed for the analysis

v

3. Blg Data OVGI‘VieW ILLINOIS INSTITUTE

OF TECHNOLOGY

* 3) New approach towards integration
— Advantage of pay-as-you-go
* More timely data (direct access)

* More applicable if characteristics of data change
dramatically (e.g., yesterdays ETL process no longer
applicable)

— Disadvantages of pay-as-you-go

* Potentially repeated efforts (everybody cleans the click-

log before running the analysis)

* Lack of meta-data may make it hard to
— Determine what data to use for analysis

— Hard to understand semantics of data

v

3. Blg Data OVGI‘VieW ILLINOIS INSTITUTE

OF TECHNOLOGY

* Scalable systems

— Performance of the system scales 1n the number of
nodes

* Ideally the per node performance is constant
independent of how many nodes there are 1n the system

* This means: having twice the number of nodes would
give us twice the performance

— Why scaling 1s important?
* [f a system scales well we can “throw” more resources
at 1t to improve performance and this 1s cost effective
jsuj'
S

3. Blg Data OVGI‘VieW ILLINOIS INSTITUTE

OF TECHNOLOGY

* What impacts scaling?

— Basically how parallelizable 1s my algorithm

* Positive example: problem can be divided into
subproblems that can be solved independently without
requiring communication

— E.g., array of 1-billion integers [1y, ..., 1; 900,000,000] add 3 to
each integer. Compute on n nodes, split input into n equally
sized chunks and let each node process one chunk

* Negative example: problem where subproblems are
strongly intercorrelated

— E.g., Context Free Grammar Membership: given a string and a
context free grammar, does the string belong to the language
defined by the grammar.

v

3. Big Data — Processing at Scale o instirure

OF TECHNOLOGY

* New problems at scale
— DBMS

* running on 1 or 10’s of machines
* running on 1000’s of machines

e Each machine has low probability of failure
— If you have many machines, failures are the norm

— Need mechanisms for the system to cope with failures
* Do not loose data

* Do not use progress of computation when node fails
— This is called fault-tolerance

3. Big Data — Processing at Scale o instirure
OF TECHNOLOGY

* New problems at scale
— DBMS

* running on 1 or 10’s of machines

* running on 1000’s of machines
* Each machine has limited storage and
computational capabilities

— Need to evenly distribute data and computation
across nodes

* Often most overloaded node determine processing speed

v

— This 1s called load-balancing

11

3. Big Data — Processing at Scale o instirure
OF TECHNOLOGY

* Building distributed systems is hard
— Many pitfalls

* Maintaining distributed state
e Fault tolerance

* Load balancing
— Requires a lot of background 1n
* OS
* Networking
* Algorithm design

* Parallel programming

12

3. Big Data — Processing at Scale o instirure
OF TECHNOLOGY

* Building distributed systems is hard
— Hard to debug

* Even debugging a parallel program on a single machine
1s already hard
— Non-determinism because of scheduling: Race conditions
— In general hard to reason over behavior of parallel threads of
execution

* Even harder when across machines

— Just think about how hard 1t was for you to first
program with threads/processes

v

13

3. Blg Data — Why large scale? ILLINOIS INSTITUTE

OF TECHNOLOGY

* Datasets are too large

— Storing a 1 Petabyte dataset requires 1 PB
storage

* Not possible on single machine even with RAID
storage

* Processing power/bandwidth of single
machine is not sufficient
— Run a query over the facebook social network
graph

* Only possible within feasible time if distributed
across many nodes —

S‘;;ﬁ
v

14

3. Big Data — User’s Point of View || inois instirure

OF TECHNOLOGY

* How to improve the efficiency of distributed
systems experts
— Building a distributed system from scratch for

every store and analysis task is obviously not
feasible!

 How to support analysis over large datasets
for non distributed systems experts

— How to enable somebody with some programming
but limited/no distributed systems background to
run distributed computations

v

15

3. Big Data — Abstractions LLINOIS INSTITUTE

OF TECHNOLOGY

 Solution

— Provide higher level abstractions

 Examples
— MPI (message passing interface)
* Widely applied in HPC
 Still quite low-level

— Distributed file systems

* Make distribution of storage transparent

— Key-value storage
* Distributed store/retrieval of data by identifier (key)

v

16

3. Big Data — Abstractions LLINOIS INSTITUTE

OF TECHNOLOGY

* More Examples
— Distributed table storage
 Store relations, but no SQL interface

— Distributed programming frameworks

* Provide a, typically, limited programming model with
automated distribution

— Distributed databases, scripting languages

* Provide a high-level language, e.g., SQL-like with an
execution engine that 1s distributed

v

17

3. Distributed File SYStemS ILLINOIS INSTITUTE

OF TECHNOLOGY

* Transparent distribution of storage
— Fault tolerance
— Load balancing?

 Examples
— HPC distributed filesystems

* Typically assume a limited number of dedicated storage
Servers

 GPFS, Lustre, PVFS
— “Big Data” filesystems
* Google file system, HDFS

v

18

3. HDFS

19

ILLINOIS INSTITUTE
OF TECHNOLOGY

 Hadoop Distributed Filesystem (HDFES)

 Architecture

— One nodes storing metadata (name node)

— Many nodes storing file content (data nodes)

* Filestructure
— Files consist of blocks (e.g., 64

 [Limitations

— Files are append only

S1Z€)

3 . HDFS ILLINOIS INSTITUTE

OF TECHNOLOGY

* Name node
* Stores the directory structure
* Stores which blocks belong to which files

* Stores which nodes store copies of which
block

 Detects when data nodes are down
— Heartbeat mechanism

e Clients communicate with the name node to
gather FS metadata

v

20

3 . HDFS ILLINOIS INSTITUTE

21

OF TECHNOLOGY

Data nodes
Store blocks
Send/receive file data from clients

Send heart-beat messages to name node to
indicate that they are still alive

Clients communicate with data nodes for
reading/writing files

v

3 . HDFS ILLINOIS INSTITUTE

OF TECHNOLOGY

* Fault tolerance
— n-way replication

— Name node detects failed nodes based on heart-
beats

— If a node 1f down, then the name node schedules
additional copies of the blocks stored by this node
to be copied from nodes storing the remaining
copies

v

22

3. DiStribUted FS DiSCUSSiOn ILLINOIS INSTITUTE

OF TECHNOLOGY

* What do we get?

— Can store files that do not fit onto single nodes

— Get fault tolerance

— Improved read speed (caused by replication)

— Decreased write speed (caused by replication)
* What is missing?

— Computations

— Locality (horizontal partitioning)

— Updates

* What is not working properly?

— Large number of files (name nodes would be
overloaded)

v

23

3. Frameworks for Distributed

ILLINOIS INSTITUTE

Computations OF TECHNOLOGY

* Problems

— Not all algorithms do parallelize well

— How to simplify distributed programming?
* Solution

— Fix a reasonable powerful, but simple enough
model of computation for which scalable
algorithms are known

— Implement distributed execution engine for this
model and make 1t fault tolerant and load-balanced

v

24

3 . MapReduce ILLINOIS INSTITUTE

OF TECHNOLOGY

* Data Model
— Sets of key-value pairs {(k;,v,), ..., (k,,v,)}
— Key i1s an 1dentifier for a piece data
— Value 1s the data associaed with a key

* Programming Model

— We have two higher-level functions map and
reduce

» Take as input a user-defined function that 1s applied to
clements 1n the mput key-value pair set

— Complex computations can be achieved by
chaining map-reduce computations

v

25

3. MapReduce Datamodel ILLINOIS INSTITUTE

OF TECHNOLOGY

* Data Model
— Sets of key-value pairs {(k;,v,), ..., (k,,v,)}
— Key i1s an 1dentifier for a piece data
— Value 1s the data associaed with a key

 Examples

— Document d with an id
* (1d, d)
— Person with name, salary, and SSN

* (SSN, “name, salary”)

26

3. MapReduce Computational Model | \nois instirure

OF TECHNOLOGY

* Map
— Takes as iput a set of key-value pairs and a user-
defined function £: (k,v) -> {(k,v)}

— Map applies f to every iput key-value pair and
returns the union of the outputs produced by

{(kllvl) 77 (knlvn)}
->

£((Kyyvy)) U e v £((ky,vy))

27

3. MapReduce Computational Model | \nois insirure

OF TECHNOLOGY

 Example
— Input: Set of (city,population) pairs
— Task: multiply population by 1.05

* Map function

— f: (city,population) ->
{(city,population*1.05)}

* Application of f through map
— Input: {(chicago, 3), (nashville, 1)}

— Output: {(chicago, 3.15)} u {(nashville, 1.05)}
= {(chicago, 3.15), (nashville, 1.05)}

v

28

3. MapReduce Computational Model | \nois insirure

OF TECHNOLOGY

e Reduce

— Takes as mnput a key with a list of associated values
and a user-defined function
g: (k,list(v)) -> {(k,v)}

— Reduce groups all values with the same key 1n the
input key-value set and passes each key and 1ts list
of values to g and returns the union of the outputs
produced by g

{(kllvll) | ALY (kllvlnl) 7 ee (kmlvml) | ALY (kmlvmnm)}
-

g((kll(vlll"'lvlnl)) U . U g((kml(vmll"-lvmnm))

v

29

3. MapReduce Computational Model | \nois insirure

OF TECHNOLOGY

 Example

— Input: Set of (state, population) pairs one for each
city in the state

— Task: compute the total population per state

e Reduce function

— g: (Stater[pll oo pn]) ->
{(state,SUM([Pi/-rPnl)}

* Application of g through reduce

—IIlplltI {(illinois, 3), (illinois, 1), (oregon, 15)}

— Output: {(illinois, 4), (oregon, 15)}

v

30

3. MapReduce Workflows ILLINOIS INSTITUTE

OF TECHNOLOGY

e Workflows

— Computations in MapReduce consists of map
phases followed by reduce phases

* The mput to the reduce phase 1s the output of the map
phase

— Complex computations may require multiple map-
reduce phases to be chained together

v

31

3. MapReduce Implementations o instirure

OF TECHNOLOGY

* MapReduce
— Developed by google
— Written in C

— Runs on top of GFS (Google’s distributed
filesystem)

* Hadoop
— Open source Apache project
— Written 1n Java

— Runs on-top of HDFS

32

3 . HadOOp ILLINOIS INSTITUTE

OF TECHNOLOGY

* Anatomy of a Hadoop cluster

— Job tracker
* Clients submit MR jobs to the job tracker

* Job tracker monitors progress

— Task tracker aka workers

* Execute map and reduce jobs

e Job

— Input: files from HDFS
— Output: written to HDFS
— Map/Reduce UDFs

33

3 . HadOOp ILLINOIS INSTITUTE

OF TECHNOLOGY

* Fault tolerance
— Handling stragglers

* Job tracker will reschedule jobs to a different worker 1f
the worker falls behind too much with processing

— Materialization
* Inputs are read from HDFS

* Workers write results of map jobs assigned to them to
local disk

* Workers write results of reduce jobs to HDFS for
persistence

v

34

3. Hadoop — MR Job ILLINOIS INSTITUTE

OF TECHNOLOGY

: Job tracker - Clients sends job to job
- Job tracker decides

Map Phase Shuffle Reduce Phase #mappers, #reducers
I i I and which nodes to use

| i -
) “
i "

35

3. Hadoop — MR Job

ILL

INOIS INSTITUTE
OF TECHNOLOGY

Map Phase

Reduce Phase

)

36

Job tracker sends jobs
to task tracker on
worker nodes

Try to schedule
map jobs on
nodes that store
the chunk
processed by a job
Job tracker monitors
progress

3. Hadoop — MR Job

ILLINOIS INSTITUTE
OF TECHNOLOGY

Map Phase

Shuffle Reduce Phase

))

A
e

[
Nod
9

Ly

Node

AN

37

i
Node
-
Node
-

- Job tracker may spawn

- Each mapper reads its
chunk from HDFS,
translates the input into
key-value pairs and
applies the map UDF to
every (k,v)

- Outputs are written to
disk with one file per
reducer (hashing on

key)

additional mappers if
mappers are not
making progress

\—/

3. Hadoop — MR Job ILLINOIS INSTITUTE

OF TECHNOLOGY

Client Job tracker - Mappers send files to
reducers (scp)
- Called shuffle

Map Phase Shuffle Reduce Phase

)))
! i

3. Hadoop — MR Job ILLINOIS INSTITUTE

OF TECHNOLOGY

Client Job tracker - Reducers merge and
sort these input files on
key values

Map Phase Shuffle Reduce Phase - External merge
A A A sort where runs
(Y V already exists

- Reducer applies reduce
UDF to each key and
associated list of values

39

3 . COmbinerS ILLINOIS INSTITUTE

OF TECHNOLOGY

* Certain reduce functions lend themselves to
pre-aggregation
— E.g., SUM(revenue) group by state

* Can compute partial sums over incomplete groups and
then sum up the pre-aggregated results

— This can be done at the mappers to reduce amount
of data send to the reducers

* Supported in Hadoop through a user provided
combiner function

— The combiner function 1s applied before writing
the mapper results to local disk

v

40

3. Example code — Word count 1inois instirure

OF TECHNOLOGY

* https://hadoop.apache.org/docs/r1.2.1/mapred
tutorial.html

public static class Map extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(l);
private Text word = new Text():;

lic void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output, Reporter
reporter) throws IOException {

String line = value.toString();

StringTokenizer tokenizer = new StringTokenizer(line);

while (tokenizer.hasMoreTokens()) {

word.set (tokenizer.nextToken());

output.collect(word, one);

\—/

41

https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html

3. Example code — Word count 1inois instirure

OF TECHNOLOGY

* https://hadoop.apache.org/docs/r1.2.1/mapred
tutorial.html

public static class Reduce extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> {

blic void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, IntWritable> outp
ut, Reporter reporter) throws IOException {

int sum = 0;

while (values.hasNext()) {

sum += values.next().get();
}
output.collect(key, new IntWritable(sum));

}

42

https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html

3. Example code — Word count 1inois instirure

OF TECHNOLOGY

- void main(String[] args) throws Exception {
JobConf conf = new JobConf(WordCount.class);

conf.setJobName("wordcount”);

conf.setOutputKeyClass(Text.class);

conf.setOutputvValueClass(IntWritable.class);

conf.setMapperClass (Map.class);
conf.setCombinerClass(Reduce.class);

conf.setReducerClass(Reduce.class);

conf.setInputFormat (TextInputFormat.class);

conf.setOutputFormat (TextOutputFormat.class);

FileInputFormat.setInputPaths(conf, new Path(args([0]));

FileOutputFormat.setOutputPath(conf, new Path(args(1l]));

JobClient.runJob(conf);

3. Systems/Languages on top of

MapReduce N o TECHNOLOGY

* Pig
— Scripting language, compiled into MR
— Akin to nested relational algebra

e Hive

— SQL 1interface for warehousing
— Compiled into MR

44

3 . Hive ILLINOIS INSTITUTE

OF TECHNOLOGY

* Hive
— HiveQL: SQL dialect with support for directly
applying given Map+Reduce functions as part of a
query
— HiveQL 1s compiled into MR jobs
— Executed of Hadoop cluster

FROM (
MAP doctext USING '‘python wc_mapper.py' AS (word, cnt)
FROM docs
CLUSTER BY word

) a
REDUCE word, cnt USING 'python wc_reduce.py’;

v

435

3 . HiVe ArChiteCture ILLINOIS INSTITUTE

OF TECHNOLOGY

HIVE

[COmmand Line Interface | Interface

Metastore

Driver
(Compiler, Optimizer, Executor)

HADOOP
(MAP-REDUCE + HDFS)

(e) D

46

3. HiVe Datam()del ILLINOIS INSTITUTE

OF TECHNOLOGY

Tables

— Attribute-DataType pairs

— User can instruct Hive to partition the table in a certain way

Datatypes

— Primitive: integer, float, string

— Complex types
« Map: Key->Value
» List
 Struct

— Complex types can be nested

Example:

CREATE TABLE tl(st string, fl float, 11 list<map<string, struct<pl:int,

p2:1nt>>);

Implementation:

— Tables are stored in HDFS =
— Serializer/Deserializer - transform for querying NP
o

47

3. Hive - Query Processing LLINGIS INSTITUTE

OF TECHNOLOGY

« Compile HiveQL query into DAG of map and
reduce functions.

— A single map/reduce may implement several

traditional query operators
« E.g., filtering out tuples that do not match a condition
(selection) and filtering out certain columns (projection)

— Hive tries to use the partition information to avoid
reading partitions that are not needed to answer the
query

* For example

— table instructor(name,department) is partitioned on
department

— SELECT name FROM instructor WHERE department = ‘CS’

— This query would only access the partition of the table for
department ‘CS’

v

48

3. Operator implementations LLINOIS INSTITUTE

OF TECHNOLOGY

* Join implementations

—Broadcast join

e Send the smaller table to all nodes

* Process the other table partitioned

— Each node finds all the join partners for a partition
of the larger table and the whole smaller table

—Reduce join (partition join)
* Use a map job to create key-value pairs where
the key 1s the join attributes
* Reducer output joined rows

v

49

3. Example plan ILLINOIS INSTITUTE

OF TECHNOLOGY

FileSinkOperator FileSinkOperator

SelectOperator
expressions: [col[0], col[1]]
[0: string, 1: bigint)

pel
expressions: [col[0], col[1]]
[0:int, 1: bigint]

I ' I("
i ' i i
i i i i
] ' 1 '
I ' 1 '
1 ' 1 '
| ' 1 '
I ! 1 '
1 | 1 1
| ' 1 '
I ! 1 '
| P |
| Reduce 2 E ' Reduce 3!
1 1 '
! GroupByOperator | ! GroupByOperator |
| aggregations: [count(1)] ! 1 aggregations: [count(1)] !
1 keys: [col[0]] ' 1 keys: [col[2] '
! mode: mergepartial i ! mode: mergepartial |
! [0: string, 1: bigint] | ! [0:int, 1: bigint] |
i i A
i |

I ' 1 '
! ReduceSinkOperator | ! ReduceSinkOperator |
| partition cols: col[0] ! | partition cols: col[0] !
' [0: string, 1: bigint] i ! [0: int, 1: bigint] '
I ' 1 1
' i ' Map 3 |
' TableScanOperator ' TableScanOperator
H table: tmp1 | | table: tmp2 I
! [0: string, 1: bigint] | ! [0: int, 1: bigint] |

FileSinkOperator
table: tmp1
[0: string, 1: bigint]

GroupByOperator GroupByOperator
aggregations: [count(1)] aggregations: [count(1)]
keys: [col[1]] keys: [col[2]]
mode: hash mode: hash
[0: string, 1: bigint) [0: int, 1: bigint]

Reduce 1

SelectOperator
expressions: [col[1], col[4], col[5]]
[0: string, 1: string, 2: int]

A
JoinOperator
predicate: col[0.0] = col[1.0]
[0: int, 1: string, 2: string, 3: int, 4: string, 5: int]

———r

ReduceSinkOperator ReduceSinkOperator
partition cols: col[0] partition cols: col[0]
[0:int, 1: string, 2: string] [0: int, 1: string, 2: int]
1 1
Map 1 FilterOperator TableScanOperator
predicate: col[ds]="2009-03-20" table: profiles
[0: int, 1: string, 2: string] [userid int, school string, gender int]
A
TableScanOperator

table: status_updates
[userid int, status string, ds string]

Spark

ILLINOIS INSTITUTE
OF TECHNOLOGY

* MR uses heavy materialization to achieve fault

tolerance
— A lot of I/O

* Spark

— Works in main memory (where possible)

— Inputs and final outputs stored in H

FS

— Recomputes partial results instead of materializing
them - resilient distributed datasets (RDD)

* Lineage: Need to know from which chunk a chunk was
derived from and by which computation

51

v

Summary ILLINOIS INSTITUTE

OF TECHNOLOGY

* Big data storage systems

* Big data computation platforms

* Big data “databases”

* How to achieve scalability
— Fault tolerance
— Load balancing

* Big data integration
— Pay-as-you-go

— Schema later

52

OU.tline ILLINOIS INSTITUTE

OF TECHNOLOGY

0) Course Info

1) Introduction

2) Data Preparation and Cleaning
3) Schema matching and mapping
4) Virtual Data Integration

5) Data Exchange

6) Data Warchousing

7) Big Data Analytics

8) Data Provenance

S3

