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* Big Topic, big Buzzwords ;-)
* Here

— Overview of two types of systems
* Key-value/document stores
* Mainly: Bulk processing (MR, graph, ...)
— What is new compared to single node systems?
— How do these systems change our approach to integration/analytics

* Schema first vs. Schema later
e Pay-as-you-go
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* 1) How does data processing at scale (read using many
machines) differ from what we had before?

— Load-balancing
— Fault tolerance
— Communication

— New abstractions
* Distributed file systems/storage
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* 2) Overview of systems and how they
achieve scalability

— Bulk processing
* MapReduce, Shark, Flink, Hyracks, ...

* Graph: e.g., Giraph, Pregel, ...

— Key-value/document stores = NoSQL
* Cassandra, MongoDB, Memcached, Dynamo, ...
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* 2) Overview of systems and how they achieve scalability
— Bulk processing
* MapReduce, Shark, Flink,
— Fault tolerance
* Replication
* Handling stragglers
— Load balancing
 Partitioning
» Shuffle
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* 3) New approach towards integration

— Large clusters enable directly running queries
over semi-structured data (within feasible time)

* Take a click-stream log and run a query

— One of the reasons why pay-as-you-go 1s now
feasible
* Previously: designing a database schema upfront and

designing a process (e.g., ETL) for cleaning and
transforming data to match this schema, then query

* Now: start analysis directly, clean and transform data if
needed for the analysis

v
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* 3) New approach towards integration
— Advantage of pay-as-you-go
* More timely data (direct access)

* More applicable if characteristics of data change
dramatically (e.g., yesterdays ETL process no longer
applicable)

— Disadvantages of pay-as-you-go

* Potentially repeated efforts (everybody cleans the click-

log before running the analysis)

* Lack of meta-data may make it hard to
— Determine what data to use for analysis

— Hard to understand semantics of data

v
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* Scalable systems

— Performance of the system scales 1n the number of
nodes

* Ideally the per node performance is constant
independent of how many nodes there are 1n the system

* This means: having twice the number of nodes would
give us twice the performance

— Why scaling 1s important?
* [f a system scales well we can “throw” more resources
at 1t to improve performance and this 1s cost effective
jsuj'
S
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* What impacts scaling?

— Basically how parallelizable 1s my algorithm

* Positive example: problem can be divided into
subproblems that can be solved independently without
requiring communication

— E.g., array of 1-billion integers [1y, ..., 1; 900,000,000] add 3 to
each integer. Compute on n nodes, split input into n equally
sized chunks and let each node process one chunk

* Negative example: problem where subproblems are
strongly intercorrelated

— E.g., Context Free Grammar Membership: given a string and a
context free grammar, does the string belong to the language
defined by the grammar.

v
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* New problems at scale
— DBMS

* running on 1 or 10’s of machines
* running on 1000’s of machines

e Each machine has low probability of failure
— If you have many machines, failures are the norm

— Need mechanisms for the system to cope with failures
* Do not loose data

* Do not use progress of computation when node fails
— This is called fault-tolerance
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* New problems at scale
— DBMS

* running on 1 or 10’s of machines

* running on 1000’s of machines
* Each machine has limited storage and
computational capabilities

— Need to evenly distribute data and computation
across nodes

* Often most overloaded node determine processing speed

v

— This 1s called load-balancing
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* Building distributed systems is hard
— Many pitfalls

* Maintaining distributed state
e Fault tolerance

* Load balancing
— Requires a lot of background 1n
* OS
* Networking
* Algorithm design

* Parallel programming

12
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* Building distributed systems is hard
— Hard to debug

* Even debugging a parallel program on a single machine
1s already hard
— Non-determinism because of scheduling: Race conditions
— In general hard to reason over behavior of parallel threads of
execution

* Even harder when across machines

— Just think about how hard 1t was for you to first
program with threads/processes

v
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* Datasets are too large

— Storing a 1 Petabyte dataset requires 1 PB
storage

* Not possible on single machine even with RAID
storage

* Processing power/bandwidth of single
machine is not sufficient
— Run a query over the facebook social network
graph

* Only possible within feasible time if distributed
across many nodes —

S‘;;ﬁ
v
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* How to improve the efficiency of distributed
systems experts
— Building a distributed system from scratch for

every store and analysis task is obviously not
feasible!

 How to support analysis over large datasets
for non distributed systems experts

— How to enable somebody with some programming
but limited/no distributed systems background to
run distributed computations

v
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 Solution

— Provide higher level abstractions

 Examples
— MPI (message passing interface)
* Widely applied in HPC
 Still quite low-level

— Distributed file systems

* Make distribution of storage transparent

— Key-value storage
* Distributed store/retrieval of data by identifier (key)

v
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* More Examples
— Distributed table storage
 Store relations, but no SQL interface

— Distributed programming frameworks

* Provide a, typically, limited programming model with
automated distribution

— Distributed databases, scripting languages

* Provide a high-level language, e.g., SQL-like with an
execution engine that 1s distributed

v
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* Transparent distribution of storage
— Fault tolerance
— Load balancing?

 Examples
— HPC distributed filesystems

* Typically assume a limited number of dedicated storage
Servers

 GPFS, Lustre, PVFS
— “Big Data” filesystems
* Google file system, HDFS

v
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 Hadoop Distributed Filesystem (HDFES)

 Architecture

— One nodes storing metadata (name node)

— Many nodes storing file content (data nodes)

* Filestructure
— Files consist of blocks (e.g., 64

 [Limitations

— Files are append only

S1Z€)
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* Name node
* Stores the directory structure
* Stores which blocks belong to which files

* Stores which nodes store copies of which
block

 Detects when data nodes are down
— Heartbeat mechanism

e Clients communicate with the name node to
gather FS metadata

v
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Data nodes
Store blocks
Send/receive file data from clients

Send heart-beat messages to name node to
indicate that they are still alive

Clients communicate with data nodes for
reading/writing files

v
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* Fault tolerance
— n-way replication

— Name node detects failed nodes based on heart-
beats

— If a node 1f down, then the name node schedules
additional copies of the blocks stored by this node
to be copied from nodes storing the remaining
copies

v
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* What do we get?

— Can store files that do not fit onto single nodes

— Get fault tolerance

— Improved read speed (caused by replication)

— Decreased write speed (caused by replication)
* What is missing?

— Computations

— Locality (horizontal partitioning)

— Updates

* What is not working properly?

— Large number of files (name nodes would be
overloaded)

v

23
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* Problems

— Not all algorithms do parallelize well

— How to simplify distributed programming?
* Solution

— Fix a reasonable powerful, but simple enough
model of computation for which scalable
algorithms are known

— Implement distributed execution engine for this
model and make 1t fault tolerant and load-balanced

v
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* Data Model
— Sets of key-value pairs {(k;,v,), ..., (k,,v,)}
— Key i1s an 1dentifier for a piece data
— Value 1s the data associaed with a key

* Programming Model

— We have two higher-level functions map and
reduce

» Take as input a user-defined function that 1s applied to
clements 1n the mput key-value pair set

— Complex computations can be achieved by
chaining map-reduce computations

v
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* Data Model
— Sets of key-value pairs {(k;,v,), ..., (k,,v,)}
— Key i1s an 1dentifier for a piece data
— Value 1s the data associaed with a key

 Examples

— Document d with an id
* (1d, d)
— Person with name, salary, and SSN

* (SSN, “name, salary”)

26
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* Map
— Takes as iput a set of key-value pairs and a user-
defined function £: (k,v) -> {(k,v)}

— Map applies f to every iput key-value pair and
returns the union of the outputs produced by

{(kllvl) 77 (knlvn)}
->

£((Kyyvy)) U e v £((ky,vy))

27
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 Example
— Input: Set of (city,population) pairs
— Task: multiply population by 1.05

* Map function

— f: (city,population) ->
{(city,population*1.05)}

* Application of f through map
— Input: {(chicago, 3), (nashville, 1)}

— Output: {(chicago, 3.15)} u {(nashville, 1.05)}
= {(chicago, 3.15), (nashville, 1.05)}

v
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e Reduce

— Takes as mnput a key with a list of associated values
and a user-defined function
g: (k,list(v)) -> {(k,v)}

— Reduce groups all values with the same key 1n the
input key-value set and passes each key and 1ts list
of values to g and returns the union of the outputs
produced by g

{(kllvll) | ALY (kllvlnl) 7 ee (kmlvml) | ALY (kmlvmnm)}
-

g((kll(vlll"'lvlnl)) U . U g((kml(vmll"-lvmnm))

v

29




3. MapReduce Computational Model | \nois insirure

OF TECHNOLOGY

 Example

— Input: Set of (state, population) pairs one for each
city in the state

— Task: compute the total population per state

e Reduce function

— g: (Stater[pll oo pn]) ->
{(state,SUM([Pi/-rPnl)}

* Application of g through reduce

—IIlplltI {(illinois, 3), (illinois, 1), (oregon, 15)}

— Output: {(illinois, 4), (oregon, 15)}

v
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e Workflows

— Computations in MapReduce consists of map
phases followed by reduce phases

* The mput to the reduce phase 1s the output of the map
phase

— Complex computations may require multiple map-
reduce phases to be chained together

v
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* MapReduce
— Developed by google
— Written in C

— Runs on top of GFS (Google’s distributed
filesystem)

* Hadoop
— Open source Apache project
— Written 1n Java

— Runs on-top of HDFS

32
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* Anatomy of a Hadoop cluster

— Job tracker
* Clients submit MR jobs to the job tracker

* Job tracker monitors progress

— Task tracker aka workers

* Execute map and reduce jobs

e Job

— Input: files from HDFS
— Output: written to HDFS
— Map/Reduce UDFs

33
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* Fault tolerance
— Handling stragglers

* Job tracker will reschedule jobs to a different worker 1f
the worker falls behind too much with processing

— Materialization
* Inputs are read from HDFS

* Workers write results of map jobs assigned to them to
local disk

* Workers write results of reduce jobs to HDFS for
persistence

v
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: Job tracker - Clients sends job to job
- Job tracker decides

Map Phase Shuffle Reduce Phase #mappers, #reducers
I i I and which nodes to use

| i -
) “
i "
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3. Hadoop — MR Job

ILL

INOIS INSTITUTE
OF TECHNOLOGY

Map Phase

Reduce Phase

)

36

Job tracker sends jobs
to task tracker on
worker nodes

Try to schedule
map jobs on
nodes that store
the chunk
processed by a job
Job tracker monitors
progress
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Map Phase

Shuffle Reduce Phase

) )

A
e

[
Nod
9
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Node

AN

37

i
Node
-
Node
-

- Job tracker may spawn

- Each mapper reads its
chunk from HDFS,
translates the input into
key-value pairs and
applies the map UDF to
every (k,v)

- Outputs are written to
disk with one file per
reducer (hashing on

key)

additional mappers if
mappers are not
making progress

\—/
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Client Job tracker - Mappers send files to
reducers (scp)
- Called shuffle

Map Phase Shuffle Reduce Phase

) ) )
! i




3. Hadoop — MR Job ILLINOIS INSTITUTE
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Client Job tracker - Reducers merge and
sort these input files on
key values

Map Phase Shuffle Reduce Phase - External merge
A A A sort where runs
( Y V already exists

- Reducer applies reduce
UDF to each key and
associated list of values

39
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* Certain reduce functions lend themselves to
pre-aggregation
— E.g., SUM(revenue) group by state

* Can compute partial sums over incomplete groups and
then sum up the pre-aggregated results

— This can be done at the mappers to reduce amount
of data send to the reducers

* Supported in Hadoop through a user provided
combiner function

— The combiner function 1s applied before writing
the mapper results to local disk

v
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* https://hadoop.apache.org/docs/r1.2.1/mapred
tutorial.html

public static class Map extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(l);
private Text word = new Text():;

lic void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output, Reporter
reporter) throws IOException {

String line = value.toString();

StringTokenizer tokenizer = new StringTokenizer(line);

while (tokenizer.hasMoreTokens()) {

word.set (tokenizer.nextToken());

output.collect(word, one);

\—/

41
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3. Example code — Word count  1inois instirure
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* https://hadoop.apache.org/docs/r1.2.1/mapred
tutorial.html

public static class Reduce extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> {

blic void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, IntWritable> outp
ut, Reporter reporter) throws IOException {

int sum = 0;

while (values.hasNext()) {

sum += values.next().get();
}
output.collect(key, new IntWritable(sum));

}

42
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- void main(String[] args) throws Exception {
JobConf conf = new JobConf(WordCount.class);

conf.setJobName( "wordcount”);

conf.setOutputKeyClass(Text.class);

conf.setOutputvValueClass(IntWritable.class);

conf.setMapperClass (Map.class);
conf.setCombinerClass(Reduce.class);

conf.setReducerClass(Reduce.class);

conf.setInputFormat (TextInputFormat.class);

conf.setOutputFormat (TextOutputFormat.class);

FileInputFormat.setInputPaths(conf, new Path(args([0]));

FileOutputFormat.setOutputPath(conf, new Path(args(1l]));

JobClient.runJob(conf);




3. Systems/Languages on top of

MapReduce N o TECHNOLOGY

* Pig
— Scripting language, compiled into MR
— Akin to nested relational algebra

e Hive

— SQL 1interface for warehousing
— Compiled into MR

44
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* Hive
— HiveQL: SQL dialect with support for directly
applying given Map+Reduce functions as part of a
query
— HiveQL 1s compiled into MR jobs
— Executed of Hadoop cluster

FROM (
MAP doctext USING '‘python wc_mapper.py' AS (word, cnt)
FROM docs
CLUSTER BY word

) a
REDUCE word, cnt USING 'python wc_reduce.py’;

v
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HIVE

[COmmand Line Interface | Interface

Metastore

Driver
(Compiler, Optimizer, Executor)

HADOOP
(MAP-REDUCE + HDFS)

(e ) D

46
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Tables

— Attribute-DataType pairs

— User can instruct Hive to partition the table in a certain way

Datatypes

— Primitive: integer, float, string

— Complex types
« Map: Key->Value
» List
 Struct

— Complex types can be nested

Example:

CREATE TABLE tl(st string, fl float, 11 list<map<string, struct<pl:int,

p2:1nt>>);

Implementation:

— Tables are stored in HDFS =
— Serializer/Deserializer - transform for querying NP
o
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3. Hive - Query Processing LLINGIS INSTITUTE
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« Compile HiveQL query into DAG of map and
reduce functions.

— A single map/reduce may implement several

traditional query operators
« E.g., filtering out tuples that do not match a condition
(selection) and filtering out certain columns (projection)

— Hive tries to use the partition information to avoid
reading partitions that are not needed to answer the
query

* For example

— table instructor(name,department) is partitioned on
department

— SELECT name FROM instructor WHERE department = ‘CS’

— This query would only access the partition of the table for
department ‘CS’

v
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* Join implementations

—Broadcast join

e Send the smaller table to all nodes

* Process the other table partitioned

— Each node finds all the join partners for a partition
of the larger table and the whole smaller table

—Reduce join (partition join)
* Use a map job to create key-value pairs where
the key 1s the join attributes
* Reducer output joined rows

v
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FileSinkOperator FileSinkOperator

SelectOperator
expressions: [col[0], col[1]]
[0: string, 1: bigint)

pel
expressions: [col[0], col[1]]
[0:int, 1: bigint]

I ' I( "
i ' i i
i i i i
] ' 1 '
I ' 1 '
1 ' 1 '
| ' 1 '
I ! 1 '
1 | 1 1
| ' 1 '
I ! 1 '
| P |
| Reduce 2 E ' Reduce 3!
1 1 '
! GroupByOperator | ! GroupByOperator |
| aggregations: [count(1)] ! 1 aggregations: [count(1)] !
1 keys: [col[0]] ' 1 keys: [col[2] '
! mode: mergepartial i ! mode: mergepartial |
! [0: string, 1: bigint] | ! [0:int, 1: bigint] |
i i A
i |

I ' 1 '
! ReduceSinkOperator | ! ReduceSinkOperator |
| partition cols: col[0] ! | partition cols: col[0] !
' [0: string, 1: bigint] i ! [0: int, 1: bigint] '
I ' 1 1
' i ' Map 3 |
' TableScanOperator ' TableScanOperator
H table: tmp1 | | table: tmp2 I
! [0: string, 1: bigint] | ! [0: int, 1: bigint] |

FileSinkOperator
table: tmp1
[0: string, 1: bigint]

GroupByOperator GroupByOperator
aggregations: [count(1)] aggregations: [count(1)]
keys: [col[1]] keys: [col[2]]
mode: hash mode: hash
[0: string, 1: bigint) [0: int, 1: bigint]

Reduce 1

SelectOperator
expressions: [col[1], col[4], col[5]]
[0: string, 1: string, 2: int]

A
JoinOperator
predicate: col[0.0] = col[1.0]
[0: int, 1: string, 2: string, 3: int, 4: string, 5: int]

———r

ReduceSinkOperator ReduceSinkOperator
partition cols: col[0] partition cols: col[0]
[0:int, 1: string, 2: string] [0: int, 1: string, 2: int]
1 1
Map 1 FilterOperator TableScanOperator
predicate: col[ds]="2009-03-20" table: profiles
[0: int, 1: string, 2: string] [userid int, school string, gender int]
A
TableScanOperator

table: status_updates
[userid int, status string, ds string]




Spark
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* MR uses heavy materialization to achieve fault

tolerance
— A lot of I/O

* Spark

— Works in main memory (where possible)

— Inputs and final outputs stored in H

FS

— Recomputes partial results instead of materializing
them - resilient distributed datasets (RDD)

* Lineage: Need to know from which chunk a chunk was
derived from and by which computation

51
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* Big data storage systems

* Big data computation platforms

* Big data “databases”

* How to achieve scalability
— Fault tolerance
— Load balancing

* Big data integration
— Pay-as-you-go

— Schema later
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