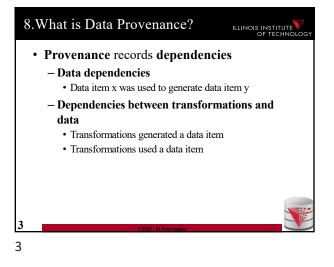
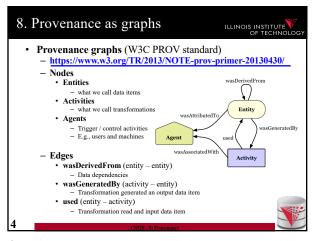
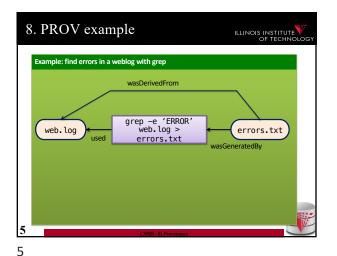
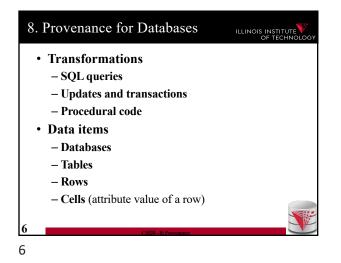


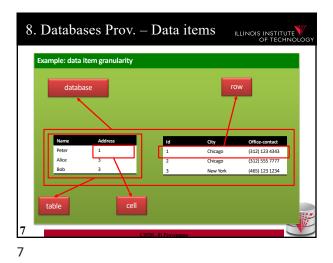
8.What is Data Provenance?	ILLINOIS INSTITUTE
 Metadata describing the origin a process of data 	nd creation
 Data items Data item granularity A File A Database An Attribute value A Row 	
 Transformations Transformation granularity A program A query An operator in a query 	
- A line in a program 2 (SS20 - I) Provemence 2	









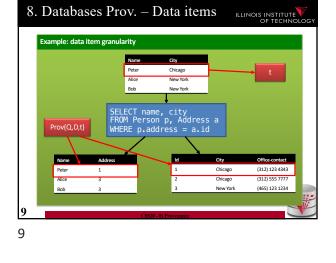


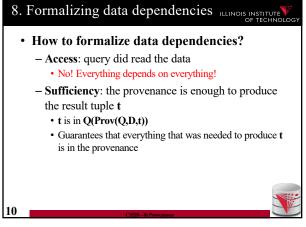
8. Provenance for Queries
Data dependencies

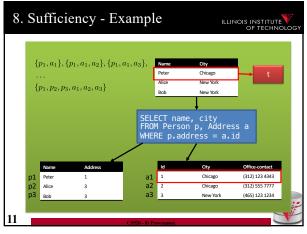
For each output tuple (cell) of the query determine which input tuples (cells) of the query it depends on

Formally (kind of)

Given database D and query Q and tuple t in Q(D)
Prov(Q,D,t) = the subset of D that was used to derive t through Q

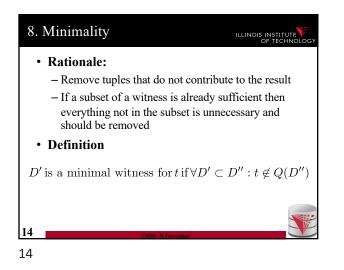


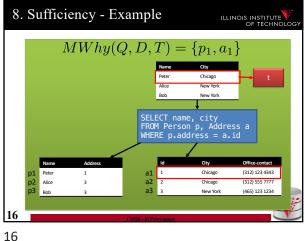


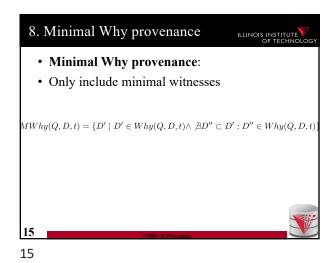


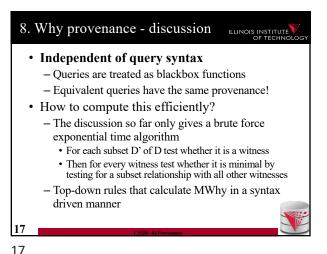
8. Sufficiency cont. ILLINOIS INSTITUTE • Is sufficiency enough? - No, sufficiency does not prevent irrelevant inputs to be included in the provenance! - Sufficiency does not uniquely define provenance Monotone Oueries - A query **Q** is monotone if $\forall D, D' : D \subseteq D' \Rightarrow Q(D) \subseteq Q(D')$ • For all monotone queries Q: - If D is sufficient then so is any superset of D - in particular the input database D is sufficient 12 12

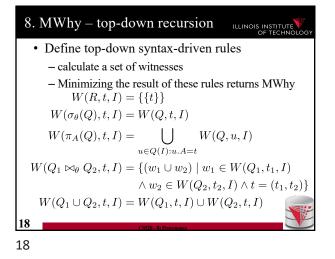
8. Why provenance ILLINOIS INSTITUTE • Rationale: define provenance as the set of all sufficient subsets of the input - this uniquely defines provenance - this does not solve the redundancy issue! • Why provenance: $Why(Q, D, t) = \{D' \mid D' \subseteq D \land t \in Q(D')\}$ • Each sufficient subset of D in the why provenance is called a witness 13 13

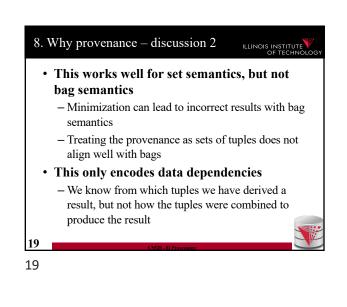




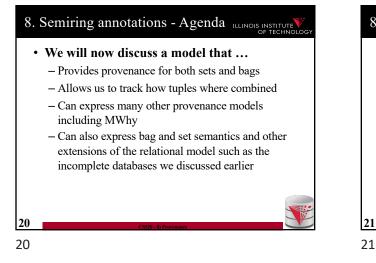








ILLINOIS INSTITUTE



ILLINOIS INSTITUTE

- We fix a set K of possible annotations
- Examples

• Powerset(Powerset(D)) = all possible sets of witnesses - We can annotate each tuple with its Why or MWhy provenance Natural numbers

- We can simulate bag semantics by annotating each tuple with its multiplicity
- · A set of possible world identifiers D1 to Dn

- Incomplete databases

- Allow data to be associated with additional

- Here we are interested in annotations on the tuples

K-relations

8. Annotations on Data

• Comments from users

Trust annotations

• Provenance

Annotations

metadata

• ...

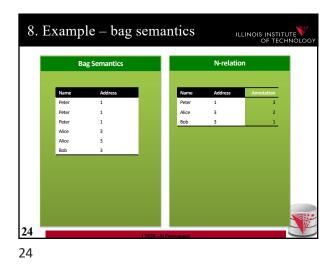
of a table

- We fix a set K of possible annotations
- K has to have a distinguished element $0_{\rm K}$
- Assume some data domain U
- An n-ary K-relation is a function

$$\mathcal{U}^n \to K$$

- We associate an annotation with every possible n-ary tuple
- $\mathbf{0}_{\mathbf{k}}$ is used to annotate tuples that are not in the relation
- · Only finitely many tuples are allowed to be mapped to a non-zero annotation

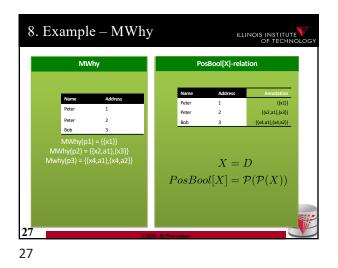
23 23

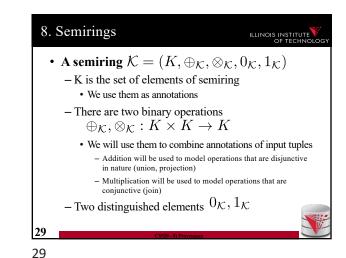


8. Example – set semantics Bag Sem

25

ILLINOIS INSTITUTE OF TECHNOI

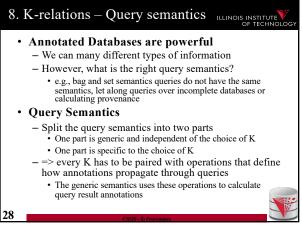




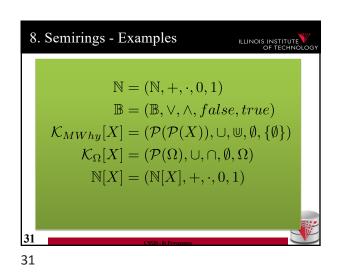
Incomplet Database D_1 $\frac{D}{\text{Peter}}$ $\frac{Name}{\text{Address}}$ Peter2Bob D_2 NameAddressPeter1Alce2Bob3 D_2 NameAddressPeter1Alce2Bob3 D_2 MareAddressPeter1Alce2BobAlce2Bob

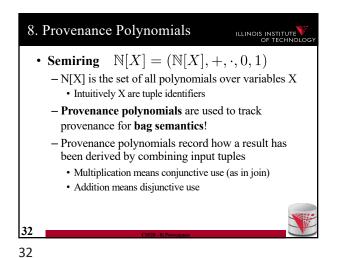
8. Example - incomplete DBs

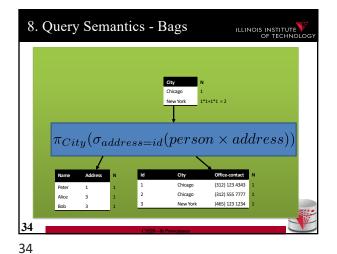
26

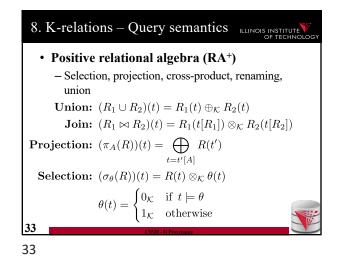


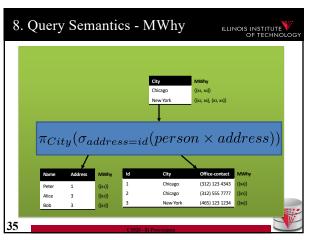
8. Semiring Laws	ILLINOIS INSTITUTE
• A semiring $\mathcal{K} = (K, \oplus_{\mathcal{K}}, \otimes_{\mathcal{K}})$	$(\mathcal{K}, 0_{\mathcal{K}}, 1_{\mathcal{K}})$
$k_1 \oplus_{\mathcal{K}} k_2 = k_2 \oplus_{\mathcal{K}} k_1$	(commutativity)
$k_1 \oplus_{\mathcal{K}} (k_2 \oplus_{\mathcal{K}} k_3) = (k_1 \oplus_{\mathcal{K}} k_2) \oplus_{\mathcal{K}} k_3$	(associativity)
$k_1 \otimes_{\mathcal{K}} k_2 = k_2 \otimes_{\mathcal{K}} k_1$	(commutativity)
$k_1 \otimes_{\mathcal{K}} (k_2 \otimes_{\mathcal{K}} k_3) = (k_1 \otimes_{\mathcal{K}} k_2) \otimes_{\mathcal{K}} k_3$	(associativity)
$k \oplus_{\mathcal{K}} 0_{\mathcal{K}} = k$	(neutral element)
$k \otimes_{\mathcal{K}} 1_{\mathcal{K}} = k$	(neutral element)
$k \otimes_{\mathcal{K}} 0_{\mathcal{K}} = 0_{\mathcal{K}}$	(annihilation by zero)
$k_1 \otimes_{\mathcal{K}} (k_2 \oplus_{\mathcal{K}} k_3) = (k_1 \otimes_{\mathcal{K}} k_2) \oplus (k_1 \otimes_{\mathcal{K}} k_3)$	(distributivity)
30 (SS20-8) Provinance	
30	





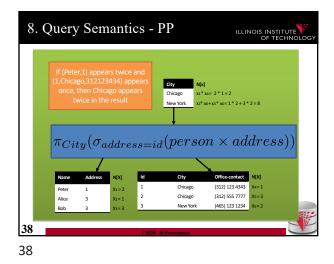


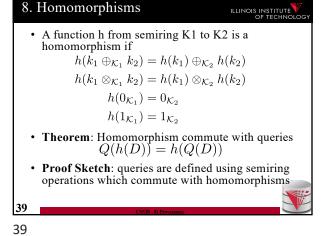




<u>δ. Q</u> ι	ıery	' Ser	nanti	ics -	PP	ILLI	NOIS INSTITUTE
					Chicago	N[x] x1* x4 x2* x6+x3* x6	
2	π_{Cit}	$t_y(\sigma)$	addre	ss=i	$_d(persc$	$pn \times ad$	(dress))
1	π_{Cit}	$t_y(\sigma_t)$	addre	ss=i	$_{d}(persc$	$n \times ad$	dress))
	∏Cit	ty (σ Address	addre	ss=i	d (perso	$on \times ad$	dress))
			_	_			
	Name	Address	N[X]	Id	City	Office-contact	N[X]
	Name Peter	Address 1	N[X]	ld 1	City Chicago	Office-contact (312) 123 4343	N[X] X4
	Name Peter Alice	Address 1 3	N[X] X1 X2	ld 1 2	City Chicago Chicago	Office-contact (312) 123 4343 (312) 555 7777	N[X] X4 X5
	Name Peter Alice	Address 1 3	N[X] X1 X2	ld 1 2 3	City Chicago Chicago New York	Office-contact (312) 123 4343 (312) 555 7777	N[X] X4 X5
	Name Peter Alice	Address 1 3	N[X] X1 X2	ld 1 2 3	City Chicago Chicago	Office-contact (312) 123 4343 (312) 555 7777	N[X] X4 X5

8. Provenance Polynomials - Computability Recall our requirements of sufficiency and minimality Provenance polynomials fulfill a stronger requirement: computability Given the result of a query in N[X], we can compute the query result in any other semiring K under a given assignment of input tuples (variables of the polynomials) to annotations from K 37 CXM-B Prevents





8. Fundamental theorem

• **Theorem**: Homomorphism commute with queries

$$Q(h(D)) = h(Q(D))$$

- **Proof Sketch**: queries are defined using semiring operations which commute with homomorphisms
- **Theorem**: Any assignment X -> K induces a semiring homomorphism N[X] -> K

8. Summary Provenance is information about the origin and creation process of data Data dependencies Dependencies between data and the transformations that generated it Provenance for Queries Correctness criteria: sufficiency, minimality, computability Provenance models:

• Why, MWhy, Provenance polynomials

41 41

40 40