
4/27/22

1

CS520
Data Integration, Warehousing, and

Provenance

8. Provenance

Boris Glavic
http://www.cs.iit.edu/~glavic/
http://www.cs.iit.edu/~cs520/

http://www.cs.iit.edu/~dbgroup/

IIT DBGroup

0

Outline

0) Course Info
1) Introduction
2) Data Preparation and Cleaning
3) Schema matching and mapping
4) Virtual Data Integration
5) Data Exchange
6) Data Warehousing
7) Big Data Analytics
8) Data Provenance

1 CS520 - 8) Provenance

1

8.What is Data Provenance?

• Metadata describing the origin and creation
process of data
– Data items

• Data item granularity
– A File
– A Database
– An Attribute value
– A Row

– Transformations
• Transformation granularity

– A program
– A query
– An operator in a query
– A line in a program

2 CS520 - 8) Provenance

2

8.What is Data Provenance?

• Provenance records dependencies
– Data dependencies
• Data item x was used to generate data item y

– Dependencies between transformations and
data
• Transformations generated a data item
• Transformations used a data item

3 CS520 - 8) Provenance

3

8. Provenance as graphs

• Provenance graphs (W3C PROV standard)
– https://www.w3.org/TR/2013/NOTE-prov-primer-20130430/
– Nodes

• Entities
– what we call data items

• Activities
– what we call transformations

• Agents
– Trigger / control activities
– E.g., users and machines

– Edges
• wasDerivedFrom (entity – entity)

– Data dependencies
• wasGeneratedBy (activity – entity)

– Transformation generated an output data item
• used (entity – activity)

– Transformation read and input data item

4 CS520 - 8) Provenance

4

8. PROV example

5 CS520 - 8) Provenance

Example: find errors in a weblog with grep

grep -e ‘ERROR’
web.log >
errors.txt

web.log errors.txt

wasDerivedFrom

used
wasGeneratedBy

5

http://www.cs.iit.edu/~glavic/
http://www.cs.iit.edu/~cs520/
http://www.cs.iit.edu/~dbgroup/
https://www.w3.org/TR/2013/NOTE-prov-primer-20130430/

4/27/22

2

8. Provenance for Databases

• Transformations
– SQL queries
– Updates and transactions
– Procedural code

• Data items
– Databases
– Tables
– Rows
– Cells (attribute value of a row)

6 CS520 - 8) Provenance

6

8. Databases Prov. – Data items

7 CS520 - 8) Provenance

Example: data item granularity

Id City Office-contact

1 Chicago (312) 123 4343

2 Chicago (312) 555 7777

3 New York (465) 123 1234

Name Address

Peter 1

Alice 3

Bob 3

database row

table cell

7

8. Provenance for Queries

• Data dependencies
– For each output tuple (cell) of the query

determine which input tuples (cells) of the query
it depends on

• Formally (kind of)
– Given database D and query Q and tuple t in Q(D)
• Prov(Q,D,t) = the subset of D that was used to derive t

through Q

8 CS520 - 8) Provenance

8

8. Databases Prov. – Data items

9 CS520 - 8) Provenance

Example: data item granularity

Id City Office-contact

1 Chicago (312) 123 4343

2 Chicago (312) 555 7777

3 New York (465) 123 1234

Name Address

Peter 1

Alice 3

Bob 3

t

Prov(Q,D,t)

Name City

Peter Chicago

Alice New York

Bob New York

SELECT name, city
FROM Person p, Address a
WHERE p.address = a.id

9

8. Formalizing data dependencies

• How to formalize data dependencies?
– Access: query did read the data
• No! Everything depends on everything!

– Sufficiency: the provenance is enough to produce
the result tuple t
• t is in Q(Prov(Q,D,t))
• Guarantees that everything that was needed to produce t

is in the provenance

10 CS520 - 8) Provenance

10

8. Sufficiency - Example

11 CS520 - 8) Provenance

Id City Office-contact

1 Chicago (312) 123 4343

2 Chicago (312) 555 7777

3 New York (465) 123 1234

Name Address

Peter 1

Alice 3

Bob 3

t
Name City

Peter Chicago

Alice New York

Bob New York

SELECT name, city
FROM Person p, Address a
WHERE p.address = a.id

p1
p2
p3

a1
a2
a3

11

4/27/22

3

8. Sufficiency cont.

• Is sufficiency enough?
– No, sufficiency does not prevent irrelevant inputs to be

included in the provenance!
– Sufficiency does not uniquely define provenance

• Monotone Queries
– A query Q is monotone if

• For all monotone queries Q:
– If D is sufficient then so is any superset of D
– in particular the input database D is sufficient

12 CS520 - 8) Provenance

12

8. Why provenance

• Rationale: define provenance as the set of all
sufficient subsets of the input
– this uniquely defines provenance
– this does not solve the redundancy issue!

• Why provenance:

• Each sufficient subset of D in the why
provenance is called a witness

13 CS520 - 8) Provenance

13

8. Minimality

• Rationale:
– Remove tuples that do not contribute to the result
– If a subset of a witness is already sufficient then

everything not in the subset is unnecessary and
should be removed

• Definition

14 CS520 - 8) Provenance

14

8. Minimal Why provenance

• Minimal Why provenance:
• Only include minimal witnesses

15 CS520 - 8) Provenance

15

8. Sufficiency - Example

16 CS520 - 8) Provenance

Id City Office-contact

1 Chicago (312) 123 4343

2 Chicago (312) 555 7777

3 New York (465) 123 1234

Name Address

Peter 1

Alice 3

Bob 3

t
Name City

Peter Chicago

Alice New York

Bob New York

SELECT name, city
FROM Person p, Address a
WHERE p.address = a.id

p1
p2
p3

a1
a2
a3

16

8. Why provenance - discussion

• Independent of query syntax
– Queries are treated as blackbox functions
– Equivalent queries have the same provenance!

• How to compute this efficiently?
– The discussion so far only gives a brute force

exponential time algorithm
• For each subset D’ of D test whether it is a witness
• Then for every witness test whether it is minimal by

testing for a subset relationship with all other witnesses
– Top-down rules that calculate MWhy in a syntax

driven manner

17 CS520 - 8) Provenance

17

4/27/22

4

8. MWhy – top-down recursion

• Define top-down syntax-driven rules
– calculate a set of witnesses
–Minimizing the result of these rules returns MWhy

18 CS520 - 8) Provenance

18

8. Why provenance – discussion 2

• This works well for set semantics, but not
bag semantics
–Minimization can lead to incorrect results with bag

semantics
– Treating the provenance as sets of tuples does not

align well with bags
• This only encodes data dependencies
–We know from which tuples we have derived a

result, but not how the tuples were combined to
produce the result

19 CS520 - 8) Provenance

19

8. Semiring annotations - Agenda

• We will now discuss a model that …
– Provides provenance for both sets and bags
– Allows us to track how tuples where combined
– Can express many other provenance models

including MWhy
– Can also express bag and set semantics and other

extensions of the relational model such as the
incomplete databases we discussed earlier

20 CS520 - 8) Provenance

20

8. Annotations on Data

• Annotations
– Allow data to be associated with additional

metadata
• Comments from users
• Trust annotations
• Provenance
• …

– Here we are interested in annotations on the tuples
of a table

21 CS520 - 8) Provenance

21

8. K-relations

• Annotation domain
–We fix a set K of possible annotations
– Examples
• Powerset(Powerset(D)) = all possible sets of witnesses

– We can annotate each tuple with its Why or MWhy provenance

• Natural numbers
– We can simulate bag semantics by annotating each tuple with

its multiplicity

• A set of possible world identifiers D1 to Dn
– Incomplete databases

22 CS520 - 8) Provenance

22

8. K-relations

• K-relations
–We fix a set K of possible annotations
–K has to have a distinguished element 0K

– Assume some data domain U
– An n-ary K-relation is a function

• We associate an annotation with every possible n-ary
tuple
• 0k is used to annotate tuples that are not in the relation
• Only finitely many tuples are allowed to be mapped to a

non-zero annotation
23 CS520 - 8) Provenance

23

4/27/22

5

8. Example – bag semantics

24 CS520 - 8) Provenance

Name Address

Peter 1

Peter 1

Peter 1

Alice 3

Alice 3

Bob 3

Name Address Annotation

Peter 1 3

Alice 3 2

Bob 3 1

Bag Semantics N-relation

24

8. Example – set semantics

25 CS520 - 8) Provenance

Name Address

Peter 1

Peter 1

Peter 1

Alice 3

Alice 3

Bob 3

Name Address Annotation

Peter 1 true

Alice 3 true

Bob 3 true

Bag Semantics B-relation

25

8. Example – incomplete DBs

26 CS520 - 8) Provenance

Name Address

Peter 1

Peter 2

Bob 3

Name Address Annotation

Peter 1 {D1,D2}

Peter 2 {D1}

Alice 2 {D2}

Bob 3 {D1,D2}

Incomplet Database -relation

Name Address

Peter 1

Alice 2

Bob 3

26

8. Example – MWhy

27 CS520 - 8) Provenance

MWhy(p1) = {{x1}}
MWhy(p2) = {{x2,a1},{x3}}

Mwhy(p3) = {{x4,a1},{x4,a2}}

Name Address

Peter 1

Peter 2

Bob 3

Name Address Annotation

Peter 1 {{x1}}

Peter 2 {{x2,a1},{x3}}

Bob 3 {{x4,a1},{x4,a2}}

MWhy PosBool[X]-relation

27

8. K-relations – Query semantics

• Annotated Databases are powerful
– We can many different types of information
– However, what is the right query semantics?

• e.g., bag and set semantics queries do not have the same
semantics, let along queries over incomplete databases or
calculating provenance

• Query Semantics
– Split the query semantics into two parts

• One part is generic and independent of the choice of K
• One part is specific to the choice of K

– => every K has to be paired with operations that define
how annotations propagate through queries
• The generic semantics uses these operations to calculate

query result annotations

28 CS520 - 8) Provenance

28

8. Semirings

• A semiring
– K is the set of elements of semiring
• We use them as annotations

– There are two binary operations

• We will use them to combine annotations of input tuples
– Addition will be used to model operations that are disjunctive

in nature (union, projection)
– Multiplication will be used to model operations that are

conjunctive (join)

– Two distinguished elements

29 CS520 - 8) Provenance

29

4/27/22

6

8. Semiring Laws

• A semiring

30 CS520 - 8) Provenance

30

8. Semirings - Examples

31 CS520 - 8) Provenance

31

8. Provenance Polynomials

• Semiring
– N[X] is the set of all polynomials over variables X
• Intuitively X are tuple identifiers

– Provenance polynomials are used to track
provenance for bag semantics!

– Provenance polynomials record how a result has
been derived by combining input tuples
• Multiplication means conjunctive use (as in join)
• Addition means disjunctive use

32 CS520 - 8) Provenance

32

8. K-relations – Query semantics

• Positive relational algebra (RA+)
– Selection, projection, cross-product, renaming,

union

33 CS520 - 8) Provenance

33

8. Query Semantics - Bags

34 CS520 - 8) Provenance

Id City Office-contact N

1 Chicago (312) 123 4343 1

2 Chicago (312) 555 7777 1

3 New York (465) 123 1234 1

Name Address N

Peter 1 1

Alice 3 1

Bob 3 1

City N

Chicago 1

New York 1*1+1*1 = 2

34

8. Query Semantics - MWhy

35 CS520 - 8) Provenance

Id City Office-contact MWhy

1 Chicago (312) 123 4343 {{x4}}

2 Chicago (312) 555 7777 {{x5}}

3 New York (465) 123 1234 {{x6}}

Name Address MWhy

Peter 1 {{x1}}

Alice 3 {{x2}}

Bob 3 {{x3}}

City MWhy

Chicago {{x1, x4}}

New York {{x2, x6}, {x3, x6}}

35

4/27/22

7

8. Query Semantics - PP

36 CS520 - 8) Provenance

Id City Office-contact N[X]

1 Chicago (312) 123 4343 x4

2 Chicago (312) 555 7777 x5

3 New York (465) 123 1234 x6

Name Address N[X]

Peter 1 x1

Alice 3 x2

Bob 3 x3

City N[x]

Chicago x1 * x4

New York x2* x6 +x3 * x6

36

8. Provenance Polynomials -
Computability

• Recall our requirements of sufficiency and
minimality

• Provenance polynomials fulfill a stronger
requirement: computability
– Given the result of a query in N[X], we can

compute the query result in any other semiring K
under a given assignment of input tuples (variables
of the polynomials) to annotations from K

37 CS520 - 8) Provenance

37

8. Query Semantics - PP

38 CS520 - 8) Provenance

Id City Office-contact N[X]

1 Chicago (312) 123 4343 X4 = 1

2 Chicago (312) 555 7777 X5 = 3

3 New York (465) 123 1234 X6 = 2

Name Address N[X]

Peter 1 X1 = 2

Alice 3 X2 = 1

Bob 3 X3 = 3

City N[x]

Chicago x1 * x4 = 2 * 1 = 2

New York x2* x6 +x3 * x6 = 1 * 2 + 3 * 2 = 8

If (Peter,1) appears twice and
(1,Chicago,312123434) appears

once, then Chicago appears
twice in the result

38

8. Homomorphisms

• A function h from semiring K1 to K2 is a
homomorphism if

• Theorem: Homomorphism commute with queries

• Proof Sketch: queries are defined using semiring
operations which commute with homomorphisms

39 CS520 - 8) Provenance

39

8. Fundamental theorem

• Theorem: Homomorphism commute with
queries

• Proof Sketch: queries are defined using
semiring operations which commute with
homomorphisms

• Theorem: Any assignment X -> K induces a
semiring homomorphism N[X] -> K

40 CS520 - 8) Provenance

40

8. Summary

• Provenance is information about the origin
and creation process of data
– Data dependencies
– Dependencies between data and the

transformations that generated it
• Provenance for Queries
– Correctness criteria:
• sufficiency, minimality, computability

– Provenance models:
• Why, MWhy, Provenance polynomials

41 CS520 - 8) Provenance

41

