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8.What is Data Provenance?

• Metadata describing the origin and creation 
process of data
– Data items

• Data item granularity
– A File
– A Database
– An Attribute value
– A Row

– Transformations
• Transformation granularity

– A program
– A query
– An operator in a query
– A line in a program
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8.What is Data Provenance?

• Provenance records dependencies
– Data dependencies
• Data item x was used to generate data item y

– Dependencies between transformations and 
data
• Transformations generated a data item
• Transformations used a data item
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8. Provenance as graphs

• Provenance graphs (W3C PROV standard)
– https://www.w3.org/TR/2013/NOTE-prov-primer-20130430/
– Nodes

• Entities
– what we call data items

• Activities
– what we call transformations

• Agents
– Trigger / control activities
– E.g., users and machines

– Edges
• wasDerivedFrom (entity – entity)

– Data dependencies
• wasGeneratedBy (activity – entity)

– Transformation generated an output data item
• used (entity – activity)

– Transformation read and input data item
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8. PROV example
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Example: find errors in a weblog with grep

grep -e ‘ERROR’ 
web.log > 
errors.txt

web.log errors.txt

wasDerivedFrom

used
wasGeneratedBy
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8. Provenance for Databases

• Transformations
– SQL queries
– Updates and transactions
– Procedural code

• Data items
– Databases
– Tables
– Rows
– Cells (attribute value of a row)
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8. Databases Prov. – Data items
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Example: data item granularity

Id City Office-contact

1 Chicago (312) 123 4343

2 Chicago (312) 555 7777

3 New York (465) 123 1234

Name Address

Peter 1

Alice 3

Bob 3

database row

table cell
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8. Provenance for Queries

• Data dependencies
– For each output tuple (cell) of the query 

determine which input tuples (cells) of the query 
it depends on

• Formally (kind of)
– Given database D and query Q and tuple t in Q(D)
• Prov(Q,D,t) = the subset of D that was used to derive t

through Q
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8. Databases Prov. – Data items
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Example: data item granularity

Id City Office-contact

1 Chicago (312) 123 4343

2 Chicago (312) 555 7777

3 New York (465) 123 1234

Name Address

Peter 1

Alice 3

Bob 3

t

Prov(Q,D,t)

Name City

Peter Chicago

Alice New York

Bob New York

SELECT name, city
FROM Person p, Address a
WHERE p.address = a.id
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8. Formalizing data dependencies

• How to formalize data dependencies?
– Access: query did read the data
• No! Everything depends on everything!

– Sufficiency: the provenance is enough to produce 
the result tuple t
• t is in Q(Prov(Q,D,t))
• Guarantees that everything that was needed to produce t

is in the provenance
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8. Sufficiency - Example
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Id City Office-contact

1 Chicago (312) 123 4343

2 Chicago (312) 555 7777

3 New York (465) 123 1234

Name Address

Peter 1

Alice 3

Bob 3

t
Name City

Peter Chicago

Alice New York

Bob New York

SELECT name, city
FROM Person p, Address a
WHERE p.address = a.id

p1
p2
p3

a1
a2
a3
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8. Sufficiency cont.

• Is sufficiency enough?
– No, sufficiency does not prevent irrelevant inputs to be 

included in the provenance!
– Sufficiency does not uniquely define provenance

• Monotone Queries
– A query Q is monotone if 

• For all monotone queries Q:
– If D is sufficient then so is any superset of D
– in particular the input database D is sufficient
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8. Why provenance

• Rationale: define provenance as the set of all 
sufficient subsets of the input
– this uniquely defines provenance
– this does not solve the redundancy issue!

• Why provenance: 

• Each sufficient subset of D in the why 
provenance is called a witness
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8. Minimality

• Rationale: 
– Remove tuples that do not contribute to the result
– If a subset of a witness is already sufficient then 

everything not in the subset is unnecessary and 
should be removed

• Definition
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8. Minimal Why provenance

• Minimal Why provenance: 
• Only include minimal witnesses
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8. Sufficiency - Example
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Id City Office-contact

1 Chicago (312) 123 4343

2 Chicago (312) 555 7777

3 New York (465) 123 1234

Name Address

Peter 1

Alice 3

Bob 3

t
Name City

Peter Chicago

Alice New York

Bob New York

SELECT name, city
FROM Person p, Address a
WHERE p.address = a.id

p1
p2
p3

a1
a2
a3
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8. Why provenance - discussion

• Independent of query syntax
– Queries are treated as blackbox functions
– Equivalent queries have the same provenance!

• How to compute this efficiently?
– The discussion so far only gives a brute force 

exponential time algorithm
• For each subset D’ of D test whether it is a witness
• Then for every witness test whether it is minimal by 

testing for a subset relationship with all other witnesses
– Top-down rules that calculate MWhy in a syntax 

driven manner
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8. MWhy – top-down recursion

• Define top-down syntax-driven rules 
– calculate a set of witnesses
–Minimizing the result of these rules returns MWhy
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8. Why provenance – discussion 2

• This works well for set semantics, but not 
bag semantics
–Minimization can lead to incorrect results with bag 

semantics
– Treating the provenance as sets of tuples does not 

align well with bags
• This only encodes data dependencies
–We know from which tuples we have derived a 

result, but not how the tuples were combined to 
produce the result
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8. Semiring annotations - Agenda

• We will now discuss a model that …
– Provides provenance for both sets and bags
– Allows us to track how tuples where combined
– Can express many other provenance models 

including MWhy
– Can also express bag and set semantics and other 

extensions of the relational model such as the 
incomplete databases we discussed earlier
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8. Annotations on Data

• Annotations
– Allow data to be associated with additional 

metadata
• Comments from users
• Trust annotations
• Provenance
• …

– Here we are interested in annotations on the tuples 
of a table
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8. K-relations

• Annotation domain
–We fix a set K of possible annotations
– Examples
• Powerset(Powerset(D)) = all possible sets of witnesses

– We can annotate each tuple with its Why or MWhy provenance

• Natural numbers
– We can simulate bag semantics by annotating each tuple with 

its multiplicity

• A set of possible world identifiers D1 to Dn
– Incomplete databases
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8. K-relations

• K-relations
–We fix a set K of possible annotations
–K has to have a distinguished element 0K

– Assume some data domain U
– An n-ary K-relation is a function

• We associate an annotation with every possible n-ary
tuple
• 0k is used to annotate tuples that are not in the relation
• Only finitely many tuples are allowed to be mapped to a 

non-zero annotation
23 CS520 - 8) Provenance
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8. Example – bag semantics
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Name Address

Peter 1

Peter 1

Peter 1

Alice 3

Alice 3

Bob 3

Name Address Annotation

Peter 1 3

Alice 3 2

Bob 3 1

Bag Semantics N-relation
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8. Example – set semantics
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Name Address

Peter 1

Peter 1

Peter 1

Alice 3

Alice 3

Bob 3

Name Address Annotation

Peter 1 true

Alice 3 true

Bob 3 true

Bag Semantics B-relation
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8. Example – incomplete DBs
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Name Address

Peter 1

Peter 2

Bob 3

Name Address Annotation

Peter 1 {D1,D2}

Peter 2 {D1}

Alice 2 {D2}

Bob 3 {D1,D2}

Incomplet Database -relation

Name Address

Peter 1

Alice 2

Bob 3
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8. Example – MWhy
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MWhy(p1) = {{x1}}
MWhy(p2) = {{x2,a1},{x3}}

Mwhy(p3) = {{x4,a1},{x4,a2}}

Name Address

Peter 1

Peter 2

Bob 3

Name Address Annotation

Peter 1 {{x1}}

Peter 2 {{x2,a1},{x3}}

Bob 3 {{x4,a1},{x4,a2}}

MWhy PosBool[X]-relation
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8. K-relations – Query semantics

• Annotated Databases are powerful
– We can many different types of information
– However, what is the right query semantics?

• e.g., bag and set semantics queries do not have the same 
semantics, let along queries over incomplete databases or 
calculating provenance

• Query Semantics
– Split the query semantics into two parts

• One part is generic and independent of the choice of K
• One part is specific to the choice of K

– => every K has to be paired with operations that define 
how annotations propagate through queries
• The generic semantics uses these operations to calculate 

query result annotations
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8. Semirings

• A semiring 
– K is the set of elements of semiring
• We use them as annotations

– There are two binary operations

• We will use them to combine annotations of input tuples
– Addition will be used to model operations that are disjunctive 

in nature (union, projection)
– Multiplication will be used to model operations that are 

conjunctive (join)

– Two distinguished elements  

29 CS520 - 8) Provenance
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8. Semiring Laws

• A semiring 
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8. Semirings - Examples

31 CS520 - 8) Provenance

31

8. Provenance Polynomials

• Semiring 
– N[X] is the set of all polynomials over variables X
• Intuitively X are tuple identifiers

– Provenance polynomials are used to track 
provenance for bag semantics!

– Provenance polynomials record how a result has 
been derived by combining input tuples
• Multiplication means conjunctive use (as in join)
• Addition means disjunctive use
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8. K-relations – Query semantics

• Positive relational algebra (RA+)
– Selection, projection, cross-product, renaming, 

union
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8. Query Semantics - Bags
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Id City Office-contact N

1 Chicago (312) 123 4343 1

2 Chicago (312) 555 7777 1

3 New York (465) 123 1234 1

Name Address N

Peter 1 1

Alice 3 1

Bob 3 1

City N

Chicago 1

New York 1*1+1*1  = 2
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8. Query Semantics - MWhy
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Id City Office-contact MWhy

1 Chicago (312) 123 4343 {{x4}}

2 Chicago (312) 555 7777 {{x5}}

3 New York (465) 123 1234 {{x6}}

Name Address MWhy

Peter 1 {{x1}}

Alice 3 {{x2}}

Bob 3 {{x3}}

City MWhy

Chicago {{x1, x4}}

New York {{x2, x6}, {x3, x6}}

35
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8. Query Semantics - PP
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Id City Office-contact N[X]

1 Chicago (312) 123 4343 x4

2 Chicago (312) 555 7777 x5

3 New York (465) 123 1234 x6

Name Address N[X]

Peter 1 x1

Alice 3 x2

Bob 3 x3

City N[x]

Chicago x1 * x4

New York x2* x6 +x3 * x6
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8. Provenance Polynomials -
Computability

• Recall our requirements of sufficiency and 
minimality

• Provenance polynomials fulfill a stronger 
requirement: computability
– Given the result of a query in N[X], we can 

compute the query result in any other semiring K 
under a given assignment of input tuples (variables 
of the polynomials) to annotations from K

37 CS520 - 8) Provenance

37

8. Query Semantics - PP
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Id City Office-contact N[X]

1 Chicago (312) 123 4343 X4 = 1

2 Chicago (312) 555 7777 X5 = 3

3 New York (465) 123 1234 X6 = 2

Name Address N[X]

Peter 1 X1 = 2

Alice 3 X2 = 1

Bob 3 X3 = 3

City N[x]

Chicago x1 * x4 =  2 * 1 = 2

New York x2* x6 +x3 * x6 = 1 * 2 + 3 * 2 = 8

If (Peter,1) appears twice and 
(1,Chicago,312123434) appears 

once, then Chicago appears 
twice in the result

38

8. Homomorphisms

• A function h from semiring K1 to K2 is a 
homomorphism if

• Theorem: Homomorphism commute with queries

• Proof Sketch: queries are defined using semiring 
operations which commute with homomorphisms

39 CS520 - 8) Provenance

39

8. Fundamental theorem

• Theorem: Homomorphism commute with 
queries

• Proof Sketch: queries are defined using 
semiring operations which commute with 
homomorphisms

• Theorem: Any assignment X -> K induces a 
semiring homomorphism N[X] -> K
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8. Summary

• Provenance is information about the origin 
and creation process of data
– Data dependencies
– Dependencies between data and the 

transformations that generated it
• Provenance for Queries
– Correctness criteria: 
• sufficiency, minimality, computability

– Provenance models:
• Why, MWhy, Provenance polynomials
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